Skip to main content
Log in

Fast vesicle transport in PC12 neurites: velocities and forces

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Although the mechanical behavior of single-motor protein molecules such as kinesin has been carefully studied in buffer, the mechanical behavior of motor-driven vesicles in cells is much less understood. We have tracked single vesicles in neurites of PC12 cells with a spatial precision of ±30 nm and a time resolution of 120 ms. Because the neurites are thin, long, straight, and attached to the surface of planar cover glasses, the velocity of individual vesicles could be measured for times as long as 15 s and distances as long as 15 μm. The velocity of anterograde vesicles was in most cases constant for periods of 1–2 s, then changed in a step-like fashion to a new constant velocity. The viscoelastic modulus felt by the vesicles within live PC12 cells was determined from the Brownian motion, using Mason’s generalization of the Stokes–Einstein equation. From Stokes’ law, the drag force at the smallest sustained velocity was 4.2±0.6 pN for vesicles of radius 0.30–0.40 μm, about half the maximum force which conventional kinesin can develop during bead assays in buffer. We interpret the observed velocity steps as changes of ±1 or occasionally ±2 in the number of active motor proteins dragging that vesicle along a microtubule. Assuming that the motor is conventional kinesin, which hydrolyzes one ATP per 8 nm step along the microtubule, the motor protein efficiency in PC12 neurites is approximately 35%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A, B
Fig. 7

Similar content being viewed by others

References

  • Allen RD, Metuzals J, Tasaki I, Brady ST, Gilbert SP (1982) Fast axonal transport in squid giant axon. Science 218:1127–1128

    CAS  PubMed  Google Scholar 

  • Ashkin A, Schuetze K, Dziedzic JM, Euteneuer U, Schliwa M (1990) Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348:346–348

    Article  CAS  PubMed  Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

  • Block SM, Goldstein L, Schnapp BJ (1990) Bead movement by single kinesin molecules studied with optical tweezers. Nature 348:348–352

    Article  CAS  PubMed  Google Scholar 

  • Brady ST, Lasek RJ, Allen RD (1982) Fast axonal transport in extruded axoplasm from squid giant axon. Science 218:1129–1131

    CAS  PubMed  Google Scholar 

  • Cox C, Reeder JE, Robinson RD, Suppes SB, Wheeless LL (1988) Comparison of frequency distributions in flow cytometry. Cytometry 9:291–298

    CAS  PubMed  Google Scholar 

  • Freed JJ, Lebowitz MM (1970) The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol 45:334–354

    CAS  PubMed  Google Scholar 

  • Gibbons F, Chauwin J-F, Desposito M, Jose JV (2001) A dynamic model of kinesin-microtublue motility assays. Biophys J 80:2515–2526

    CAS  PubMed  Google Scholar 

  • Goldstein L (2001) Kinesin molecular motors: transport parhways, receptors, and human disease. Proc Natl Acad Sci USA 98:6999–7003

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LSB, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    Article  CAS  PubMed  Google Scholar 

  • Grafstein B, Forman DS (1980) Intracellular transport in neurons. Physiol Rev 60:1167–1283

    CAS  PubMed  Google Scholar 

  • Greene LA, Frinelli SE, Cunningham ME, Park DS (1998) Culture and experimental use of the PC12 rat pheochromocytoma cell line. In: Banker G, Goslin K (eds) Culturing nerve cells. MIT Press, Cambridge, pp 000–000

  • Gross SP, Welte MA, Block SM, Wieschaus EF (2000) Dynein-mediated cargo transport in vivo: a switch controls travel distance. J Cell Biol 148:945–955

    Article  CAS  PubMed  Google Scholar 

  • Gross SP, Welte MA, Block SM, Wieschaus EF (2002) Coordination of opposite-polarity microtubule motors. J Cell Biol 156:715–724

    Article  CAS  PubMed  Google Scholar 

  • Hill DB (2003) Changes in the number of molecular motors driving vesicle transport in PC12. PhD thesis. Wake Forest University, Winston-Salem

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth GM, Hill DB, McLaughlin EB (2000) Polarization-modulated differential interference contrast microscopy with a variable retarder. Appl Opt 39:6288–6294

    Google Scholar 

  • Holzwarth G, Bonin K, Hill DB (2002) Forces required of kinesin during processive transport through cytoplasm. Biophys J 82:1784–1790

    CAS  PubMed  Google Scholar 

  • Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland, Mass

  • Howard J, Hudspeth AJ, Vale RD (1989) Movement of microtubules by single kinesin molecules. Nature 342:154–158

    CAS  PubMed  Google Scholar 

  • Hunt AJ, Gittes F, Howard J (1994) The force exerted by a single kinesin molecule against a viscous load. Biophys J 67:766–781

    CAS  PubMed  Google Scholar 

  • Kaether C, Skehel P, Dotti CG (2000) Axonal membrane proteins are transported in distinct carriers: a two-color video microscopy study in cultured hippocampal neurons. Mol Biol Cell 11:1213–1224

    CAS  PubMed  Google Scholar 

  • Kojima H, Muto E, Higuchi H, Yanagida T (1997) Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J 73:2012–2022

    CAS  PubMed  Google Scholar 

  • Lochner JE, Kingma M, Kuhn S, Meliza CD, Cutler B, et al. (1998) Real-time imaging of the axonal transport of granules containing a tissue plasminogen activator/green fluorescent protein hybrid. Mol Biol Cell 9:2463–2476

    CAS  PubMed  Google Scholar 

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378

    Article  CAS  Google Scholar 

  • Meyhoefer E, Howard J (1995) The force generated by a single kinesin molecule against an elastic load. Proc Natl Acad Sci USA 92:574–578

    CAS  PubMed  Google Scholar 

  • Nishiyama M, Muto E, Inoue Y, Yanagida T, Higuchi H (2001) Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nat Cell Biol 3:425–428

    Article  CAS  PubMed  Google Scholar 

  • Okabe S, Hirokawa N (1988) Microtubule dynamics in nerve cells: analysis using microinjection of biotinylated tubulin into PC12 cells. J Cell Biol 107:651–664

    CAS  PubMed  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (2002) Numerical recipes in C++: the art of scientific computing. Cambridge University Press, Cambridge

  • Rebuhn L (1967) Saltatory particle movements and their relation to the mitotic apparatus. In: Levine L (ed) The cell in mitosis. Academic Press, New York, pp 67–106

  • Schliwa M (2003) Molecular motors. Wiley-VCH, Weinheim

  • Schnitzer MJ, Visscher K, Block SM (2000) Force production by single-kinesin motors. Nat Cell Biol 2:718–723

    Article  CAS  PubMed  Google Scholar 

  • Smith GA, Gross SP, Enquist LW (2001) Herpes viruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci USA 98:3466–3470

    Article  CAS  PubMed  Google Scholar 

  • Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill UP, et al. (1999) Microtulule-dependent plus- and minus-end-directed motilities are competing processes for nuclear targetting of adenovirus. J Cell Biol 144:657–672

    Article  CAS  PubMed  Google Scholar 

  • Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727

    CAS  PubMed  Google Scholar 

  • Vale RD, Funatsu T, Pierce DW, Romberg L, Harada Y, et al. (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453

    Article  CAS  PubMed  Google Scholar 

  • Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    CAS  PubMed  Google Scholar 

  • Welte MA, Gross S, Postner M, Block S, Wieschaus E (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557

    CAS  PubMed  Google Scholar 

  • Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747

    CAS  PubMed  Google Scholar 

  • Zhou MH, Mascher IB, Scholey JM (2001) Direct visualization of the movement of the monomeric axonal transport motor UNC-104 along neuronal processes in living Caenorhabditis elegans. J Neurosci 21:3749–3755

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professors Carol Milligan and Dan Johnson, and Jason Newbern, for help with growth of PC12. We are grateful to Jennifer Shuler and Anita McCauley for guidance with immuno-labeling. We thank Hamamatsu Photonic Systems for the loan of a camera. Finally, we are grateful to Wake Forest University for support of this project through a Cross-Campus Collaboration Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Holzwarth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, D.B., Plaza, M.J., Bonin, K. et al. Fast vesicle transport in PC12 neurites: velocities and forces. Eur Biophys J 33, 623–632 (2004). https://doi.org/10.1007/s00249-004-0403-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0403-6

Keywords

Navigation