Skip to main content

Advertisement

Log in

The microbiome: stress, health and disease

Mammalian Genome Aims and scope Submit manuscript

Abstract

Bacterial colonisation of the gut plays a major role in postnatal development and maturation of key systems that have the capacity to influence central nervous system (CNS) programming and signaling, including the immune and endocrine systems. Individually, these systems have been implicated in the neuropathology of many CNS disorders and collectively they form an important bidirectional pathway of communication between the microbiota and the brain in health and disease. Regulation of the microbiome–brain–gut axis is essential for maintaining homeostasis, including that of the CNS. Moreover, there is now expanding evidence for the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. Research has focused on how the microbiota communicates with the CNS and thereby influences brain function. The routes of this communication are not fully elucidated but include neural, humoral, immune and metabolic pathways. This view is underpinned by studies in germ-free animals and in animals exposed to pathogenic bacterial infections, probiotic agents or antibiotics which indicate a role for the gut microbiota in the regulation of mood, cognition, pain and obesity. Thus, the concept of a microbiome–brain–gut axis is emerging which suggests that modulation of the gut microflora may be a tractable strategy for developing novel therapeutics for complex stress-related CNS disorders where there is a huge unmet medical need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JB et al (2011a) Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22

    PubMed Central  PubMed  Google Scholar 

  • Adams JB et al (2011b) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab (Lond) 8(1):34

    PubMed Central  Google Scholar 

  • Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98(2):229–238

    CAS  PubMed  Google Scholar 

  • Ait-Belgnaoui A et al (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895

    CAS  PubMed  Google Scholar 

  • Aroniadis OC, Brandt LJ (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29(1):79–84

    PubMed  Google Scholar 

  • Arora T, Singh S, Sharma RK (2013) Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29(4):591–596

    CAS  PubMed  Google Scholar 

  • Arumugam M et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz Q, Thompson DG (1998) Brain–gut axis in health and disease. Gastroenterology 114(3):559–578

    CAS  PubMed  Google Scholar 

  • Backhed F et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723

    PubMed  Google Scholar 

  • Backhed F et al (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920

    PubMed  Google Scholar 

  • Backhed F et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci USA 104(3):979–984

    CAS  PubMed  Google Scholar 

  • Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35(2):146–155

    CAS  PubMed  Google Scholar 

  • Bailey MT et al (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25(3):397–407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett E et al (2012a) Gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    CAS  PubMed  Google Scholar 

  • Barrett E et al (2012b) Bifidobacterium breve with alpha-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome. PLoS One 7(11):e48159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett E et al (2013) The individual-specific and diverse nature of the preterm infant microbiota. Arch Dis Child Fetal Neonatal Ed 98(4):F334–F340

    PubMed  Google Scholar 

  • Bateman A et al (1989) The immune-hypothalamic–pituitary–adrenal axis. Endocr Rev 10(1):92–112

    CAS  PubMed  Google Scholar 

  • Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125(1–2):141–149

    CAS  PubMed  Google Scholar 

  • Bengmark S (2013) Gut microbiota, immune development and function. Pharmacol Res 69(1):87–113

    CAS  PubMed  Google Scholar 

  • Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61(3):355–361

    Google Scholar 

  • Bercik P (2011) The microbiota–gut–brain axis: learning from intestinal bacteria? Gut 60(3):288–289

    PubMed  Google Scholar 

  • Bercik P et al (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139(6):2102–2112

    CAS  PubMed  Google Scholar 

  • Bercik P et al (2011a) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141(2):599–609

    CAS  PubMed  Google Scholar 

  • Bercik P et al (2011b) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23(12):1132–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bested AC, Logan AC, Selhub EM (2013a) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part I—autointoxication revisited. Gut Pathog 5(1):5

    PubMed Central  PubMed  Google Scholar 

  • Bested AC, Logan AC, Selhub EM (2013b) Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III—convergence toward clinical trials. Gut Pathog 5(1):4

    PubMed Central  PubMed  Google Scholar 

  • Bethea TC, Sikich L (2007) Early pharmacological treatment of autism: a rationale for developmental treatment. Biol Psychiatry 61(4):521–537

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biesiada G et al (2012) Lyme disease: review. Arch Med Sci 8(6):978–982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bilbo SD, Schwarz JM (2012) The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 33(3):267–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonaz BL, Bernstein CN (2013) Brain–gut interactions in inflammatory bowel disease. Gastroenterology 144(1):36–49

    PubMed  Google Scholar 

  • Borody TJ, Khoruts A (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9(2):88–96

    CAS  Google Scholar 

  • Bostrom AM et al (2012) Workplace aggression experienced by frontline staff in dementia care. J Clin Nurs 21(9–10):1453–1465

    PubMed  Google Scholar 

  • Bravo JA et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38):16050–16055

    CAS  PubMed  Google Scholar 

  • Bravo JA et al (2012) Communication between gastrointestinal bacteria and the nervous system. Curr Opin Pharmacol 12(6):667–672

    CAS  PubMed  Google Scholar 

  • Browne CA et al (2012) An effective dietary method for chronic tryptophan depletion in two mouse strains illuminates a role for 5-HT in nesting behaviour. Neuropharmacology 62(5–6):1903–1915

    CAS  PubMed  Google Scholar 

  • Caspi A et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    CAS  PubMed  Google Scholar 

  • Cho CE, Norman M (2013) Cesarean section and development of the immune system in the offspring. Am J Obstet Gynecol 208(4):249–254

    PubMed  Google Scholar 

  • Cho I et al (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591

    CAS  PubMed  Google Scholar 

  • Claesson MJ et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    CAS  PubMed  Google Scholar 

  • Clarke G et al (2009) Irritable bowel syndrome: towards biomarker identification. Trends Mol Med 15(10):478–489

    CAS  PubMed  Google Scholar 

  • Clarke G et al (2012) Review article: probiotics for the treatment of irritable bowel syndrome-focus on lactic acid bacteria. Aliment Pharmacol Ther 35(4):403–413

    CAS  PubMed  Google Scholar 

  • Clarke G, Dinan TG, Cryan JF (2013a) Microbiome–gut–brain axis: encyclopedia of metagenomics. Springer, Berlin

    Google Scholar 

  • Clarke G et al (2013b) The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673

    CAS  PubMed  Google Scholar 

  • Codling C et al (2010) A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig Dis Sci 55(2):392–397

    PubMed  Google Scholar 

  • Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136(6):2003–2014

    PubMed  Google Scholar 

  • Collins SM, Bercik P (2013) Gut microbiota: Intestinal bacteria influence brain activity in healthy humans. Nat Rev Gastroenterol Hepatol 10(6):326–327

    PubMed  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    CAS  PubMed  Google Scholar 

  • Costedio MM, Hyman N, Mawe GM (2007) Serotonin and its role in colonic function and in gastrointestinal disorders. Dis Colon Rectum 50(3):376–388

    PubMed  Google Scholar 

  • Costello EK et al (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336(6086):1255–1262

    CAS  PubMed  Google Scholar 

  • Craft N, Li H (2013) Response to the commentaries on the paper: propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Investig Dermatol 133(9):2295–2297

    CAS  PubMed  Google Scholar 

  • Creed F et al (2003) The cost-effectiveness of psychotherapy and paroxetine for severe irritable bowel syndrome. Gastroenterology 124(2):303–317

    PubMed  Google Scholar 

  • Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  • Cryan JF, O’Mahony SM (2011) The microbiome–gut–brain axis: from bowel to behavior. Neurogastroenterol Motil 23(3):187–192

    CAS  PubMed  Google Scholar 

  • Damman CJ et al (2012) The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 107(10):1452–1459

    PubMed  Google Scholar 

  • Davari S et al (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 240:287–296

    CAS  PubMed  Google Scholar 

  • Davey KJ et al (2012) Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters. Psychopharmacology (Berl) 221(1):155–169

    CAS  Google Scholar 

  • Davey KJ et al (2013) Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat. Transl Psychiatry 3:e309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis KD et al (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70(2):153–154

    CAS  PubMed  Google Scholar 

  • De Filippo C et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107(33):14691–14696

    PubMed  Google Scholar 

  • de Theije CG et al (2011) Pathways underlying the gut-to-brain connection in autism spectrum disorders as future targets for disease management. Eur J Pharmacol 668(Suppl 1):S70–S80

    PubMed  Google Scholar 

  • Deng W et al (2012) A mathematical model of mucilage expansion in myxospermous seeds of Capsella bursa-pastoris (shepherd’s purse). Ann Bot 109(2):419–427

    CAS  PubMed  Google Scholar 

  • Desbonnet L et al (2008) The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43(2):164–174

    PubMed  Google Scholar 

  • Desbonnet L et al (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170(4):1179–1188

    CAS  PubMed  Google Scholar 

  • Desbonnet L et al (2013) Microbiota is essential for social development in the mouse. Mol Psychiatry. doi:10.1038/mp.2013.65

  • Diamond B et al (2011) It takes guts to grow a brain: increasing evidence of the important role of the intestinal microflora in neuro- and immune-modulatory functions during development and adulthood. Bioessays 33(8):588–591

    CAS  PubMed  Google Scholar 

  • Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108(7):3047–3052

    PubMed  Google Scholar 

  • Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726

    CAS  PubMed  Google Scholar 

  • Dominguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975

    PubMed  Google Scholar 

  • Dooley W et al. (2011) Do the CMS proposed breast cancer quality measures actually predict improved outcomes? Am J Surg 202(6): 787–795; discussion 95

    Google Scholar 

  • Douglas-Escobar M, Elliott E, Neu J (2013) Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 167(4):374–379

    PubMed  Google Scholar 

  • Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Finegold SM et al (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35(Suppl 1):S6–S16

    PubMed  Google Scholar 

  • Finegold SM et al (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453

    CAS  PubMed  Google Scholar 

  • Folks DG (2004) The interface of psychiatry and irritable bowel syndrome. Curr Psychiatry Rep 6(3):210–215

    PubMed  Google Scholar 

  • Fombonne E (2005) Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry 66(Suppl 10):3–8

    PubMed  Google Scholar 

  • Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70(1):55–69

    CAS  PubMed  Google Scholar 

  • Forsythe P et al (2010) Mood and gut feelings. Brain Behav Immun 24(1):9–16

    PubMed  Google Scholar 

  • Foster JA, McVey Neufeld KA (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36(5):305–312

    CAS  PubMed  Google Scholar 

  • Fraher MH, O’Toole PW, Quigley EM (2012) Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol 9(6):312–322

    CAS  PubMed  Google Scholar 

  • Garcia-Rodenas CL et al (2006) Nutritional approach to restore impaired intestinal barrier function and growth after neonatal stress in rats. J Pediatr Gastroenterol Nutr 43(1):16–24

    PubMed  Google Scholar 

  • Gareau MG et al (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    CAS  PubMed  Google Scholar 

  • Gareau MG, Silva MA, Perdue MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8(4):274–281

    CAS  PubMed  Google Scholar 

  • Gareau MG et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317

    PubMed  Google Scholar 

  • Genton L, Kudsk KA (2003) Interactions between the enteric nervous system and the immune system: role of neuropeptides and nutrition. Am J Surg 186(3):253–258

    CAS  PubMed  Google Scholar 

  • Ghosh S et al (2013) Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 8(2):e55468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  PubMed  Google Scholar 

  • Goehler LE et al (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19(4):334–344

    PubMed  Google Scholar 

  • Gondalia SV et al (2012) Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res 5(6):419–427

    PubMed  Google Scholar 

  • Grabrucker AM (2012) Environmental factors in autism. Front Psychiatry 3:118

    PubMed Central  PubMed  Google Scholar 

  • Gregory KE (2011) Microbiome aspects of perinatal and neonatal health. J Perinat Neonatal Nurs 25(2): 158–162; quiz 63–64

    Google Scholar 

  • Grenham S et al (2011) Brain–gut–microbe communication in health and disease. Front Physiol 2:94

    PubMed Central  PubMed  Google Scholar 

  • Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groeger D et al (2013) Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 4(4):325–339

    PubMed  Google Scholar 

  • Gulati AS et al (2012) Mouse background strain profoundly influences Paneth cell function and intestinal microbial composition. PLoS One 7(2):e32403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hakem A et al (2011) Role of Pirh2 in mediating the regulation of p53 and c-Myc. PLoS Genet 7(11):e1002360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Happe F et al (2006) Executive function deficits in autism spectrum disorders and attention-deficit/hyperactivity disorder: examining profiles across domains and ages. Brain Cogn 61(1):25–39

    PubMed  Google Scholar 

  • Hedges DW, Woon FL (2011) Early-life stress and cognitive outcome. Psychopharmacology (Berl) 214(1):121–130

    CAS  Google Scholar 

  • Hillila MT, Farkkila NJ, Farkkila MA (2010) Societal costs for irritable bowel syndrome—a population based study. Scand J Gastroenterol 45(5):582–591

    PubMed  Google Scholar 

  • Holzer P, Reichmann F, Farzi A (2012) Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46(6):261–274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hori T et al (1995) The autonomic nervous system as a communication channel between the brain and the immune system. Neuroimmunomodulation 2(4):203–215

    CAS  PubMed  Google Scholar 

  • Hornig M (2013) The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol 25(4):488–495

    CAS  PubMed  Google Scholar 

  • Jeffery IB et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006

    PubMed  Google Scholar 

  • Jimenez E et al (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159(3):187–193

    CAS  PubMed  Google Scholar 

  • Johnson CL, Versalovic J (2012) The human microbiome and its potential importance to pediatrics. Pediatrics 129(5):950–960

    PubMed  Google Scholar 

  • Johnson AC, Greenwood-Van Meerveld B, McRorie J (2011) Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig Dis Sci 56(11):3179–3186

    PubMed  Google Scholar 

  • Kandel E (2012) The biological mind and art. A conversation with Eric Kandel, MD. Interview by Sue Pondrom. Ann Neurol 72(5):A7–A8

    PubMed  Google Scholar 

  • Kasprowicz VO et al (2011) Diagnosing latent tuberculosis in high-risk individuals: rising to the challenge in high-burden areas. J Infect Dis 204(Suppl 4):S1168–S1178

    PubMed  Google Scholar 

  • Kendler KS, Thornton LM, Gardner CO (2000) Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis. Am J Psychiatry 157(8):1243–1251

    CAS  PubMed  Google Scholar 

  • Kennedy PJ et al (2012) Gut memories: towards a cognitive neurobiology of irritable bowel syndrome. Neurosci Biobehav Rev 36(1):310–340

    PubMed  Google Scholar 

  • Kinross J, Nicholson JK (2012) Gut microbiota: Dietary and social modulation of gut microbiota in the elderly. Nat Rev Gastroenterol Hepatol 9(10):563–564

    PubMed  Google Scholar 

  • Konieczna P et al (2012) Portrait of an immunoregulatory Bifidobacterium. Gut Microbes 3(3):261–266

    PubMed  Google Scholar 

  • Krogius-Kurikka L et al (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol 9:95

    PubMed Central  PubMed  Google Scholar 

  • Kunze WA et al (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13(8B):2261–2270

    PubMed  Google Scholar 

  • Larsen N et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085

    PubMed Central  PubMed  Google Scholar 

  • Ledford JR, Gast DL (2006) Feeding problems in children with autism spectrum disorders : a review. Focus Autism Other Dev Disabl 21:153

    Google Scholar 

  • Leonard BE (2005) The HPA and immune axes in stress: the involvement of the serotonergic system. Eur Psychiatry 20(Suppl 3):S302–S306

    PubMed  Google Scholar 

  • Ley RE et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075

    CAS  PubMed  Google Scholar 

  • Ley RE et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122):1022–1023

    CAS  PubMed  Google Scholar 

  • Longstreth GF et al (2006) Functional bowel disorders. Gastroenterology 130(5):1480–1491

    PubMed  Google Scholar 

  • Louis P (2012) Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig Dis Sci 57(8):1987–1989

    PubMed  Google Scholar 

  • Lozupone CA et al (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lupien SJ et al (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445

    CAS  PubMed  Google Scholar 

  • Lyte M, Varcoe JJ, Bailey MT (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65(1):63–68

    CAS  PubMed  Google Scholar 

  • MacFabe DF et al (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54

    CAS  PubMed  Google Scholar 

  • Macpherson AJ, Uhr T (2002) Gut flora—mechanisms of regulation. Eur J Surg Suppl 587:53–57

    PubMed  Google Scholar 

  • Maes M, Kubera M, Leunis JC (2008) The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29(1):117–124

    PubMed  Google Scholar 

  • Marco ML et al (2009) Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 11(10):2747–2757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marques TM et al (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol 21(2):149–156

    CAS  PubMed  Google Scholar 

  • Matsumoto M et al (2013) Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Front Syst Neurosci 7:9

    PubMed Central  PubMed  Google Scholar 

  • Matthews DM, Jenks SM (2013) Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Processes 96:27–35

    PubMed  Google Scholar 

  • Mayer EA (2011) Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci 12(8):453–466

    CAS  PubMed  Google Scholar 

  • Maynard CL et al (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489(7415):231–241

    CAS  PubMed  Google Scholar 

  • McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci USA 109(Suppl 2):17180–17185

    CAS  PubMed  Google Scholar 

  • McKernan DP et al (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 22 (9), 1029–1035, e268

    Google Scholar 

  • McLean PG, Borman RA, Lee K (2007) 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 30(1):9–13

    CAS  PubMed  Google Scholar 

  • McVey Neufeld KA et al (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25(2):e88–e183

    Google Scholar 

  • Mertz H (2002) Role of the brain and sensory pathways in gastrointestinal sensory disorders in humans. Gut 51(Suppl 1):i29–i33

    PubMed  Google Scholar 

  • Mertz H et al (2000) Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology 118(5):842–848

    CAS  PubMed  Google Scholar 

  • Messaoudi M et al (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2(4):256–261

    Google Scholar 

  • Moayyedi P et al (2010) The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59(3):325–332

    CAS  PubMed  Google Scholar 

  • Mocking RJ et al (2013) Relationship between the hypothalamic–pituitary–adrenal-axis and fatty acid metabolism in recurrent depression. Psychoneuroendocrinology 38(9):1607–1617

    CAS  PubMed  Google Scholar 

  • Moore P et al (2000) Clinical and physiological consequences of rapid tryptophan depletion. Neuropsychopharmacology 23(6):601–622

    CAS  PubMed  Google Scholar 

  • Mulle JG, Sharp WG, Cubells JF (2013) The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep 15(2):337

    PubMed Central  PubMed  Google Scholar 

  • Murphy EF et al (2013) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62(2):220–226

    PubMed  Google Scholar 

  • Myint AM et al (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151

    CAS  PubMed  Google Scholar 

  • Myint AM et al (2013) Tryptophan metabolism and immunogenetics in major depression: a role for interferon-gamma gene. Brain Behav Immun 31:128–133

    CAS  PubMed  Google Scholar 

  • Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21(6):736–745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naslund J et al (2013) Serotonin depletion counteracts sex differences in anxiety-related behaviour in rat. Psychopharmacology (Berl) 230(1):29–35

    Google Scholar 

  • Neufeld KM et al (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3): 255–264, e119

    Google Scholar 

  • Nicholson JK et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267

    CAS  PubMed  Google Scholar 

  • Nishino R et al (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25(6):521–528

    Google Scholar 

  • Nolen-Hoeksema S, Larson J, Grayson C (1999) Explaining the gender difference in depressive symptoms. J Pers Soc Psychol 77(5):1061–1072

    CAS  PubMed  Google Scholar 

  • Nutt DJ, Malizia AL (2004) Structural and functional brain changes in posttraumatic stress disorder. J Clin Psychiatry 65(Suppl 1):11–17

    PubMed  Google Scholar 

  • Ohland CL et al (2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology 38(9):1738–1747

    Google Scholar 

  • Olivares M, Laparra JM, Sanz Y (2013) Host genotype, intestinal microbiota and inflammatory disorders. Br J Nutr 109(Suppl 2):S76–S80

    CAS  PubMed  Google Scholar 

  • O’Mahony SM et al (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65(3):263–267

    PubMed  Google Scholar 

  • O’Mahony SM et al (2011) Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacology (Berl) 214(1):71–88

    Google Scholar 

  • Ozawa E (1955) Studies on growth promotion by antibiotics. II. Results of aurofac administration to infants. J Antibiot (Tokyo) 8(6):212–214

    CAS  Google Scholar 

  • Parfrey LW, Knight R (2012) Spatial and temporal variability of the human microbiota. Clin Microbiol Infect 18(Suppl 4):8–11

    PubMed  Google Scholar 

  • Parkes GC, Sanderson JD, Whelan K (2010) Treating irritable bowel syndrome with probiotics: the evidence. Proc Nutr Soc 69(2):187–194

    CAS  PubMed  Google Scholar 

  • Perez-Burgos A et al (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 304(2):G211–G220

    CAS  PubMed  Google Scholar 

  • Pickett BE et al (2012) ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40(Database issue):D593–D598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pimentel M, Lezcano S (2007) Irritable bowel syndrome: bacterial overgrowth—what’s known and what to do. Curr Treat Options Gastroenterol 10(4):328–337

    PubMed  Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    CAS  PubMed  Google Scholar 

  • Rabot S et al (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24(12):4948–4959

    CAS  PubMed  Google Scholar 

  • Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9(9):2125–2136

    PubMed  Google Scholar 

  • Relman DA (2012) The human microbiome: ecosystem resilience and health. Nutr Rev 70(Suppl 1):S2–S9

    PubMed Central  PubMed  Google Scholar 

  • Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314

    CAS  PubMed  Google Scholar 

  • Romero R, Korzeniewski SJ (2013) Are infants born by elective cesarean delivery without labor at risk for developing immune disorders later in life? Am J Obstet Gynecol 208(4):243–246

    PubMed  Google Scholar 

  • Rousseaux C et al (2007) Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med 13(1):35–37

    CAS  PubMed  Google Scholar 

  • Ruddick JP et al (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8(20):1–27

    PubMed  Google Scholar 

  • Salonen A, de Vos WM, Palva A (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156(Pt 11):3205–3215

    CAS  PubMed  Google Scholar 

  • Sam AH et al (2012) The role of the gut/brain axis in modulating food intake. Neuropharmacology 63(1):46–56

    Google Scholar 

  • Sandler RH et al (2000) Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 15(7):429–435

    CAS  PubMed  Google Scholar 

  • Saulnier DM et al (2013) The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 4(1):17–27

    PubMed  Google Scholar 

  • Savignac HM et al (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63(8):756–764

    Google Scholar 

  • Schellekens H et al (2012) Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther 135(3):316–326

    Google Scholar 

  • Schultz ST et al (2006) Breastfeeding, infant formula supplementation, and autistic disorder: the results of a parent survey. Int Breastfeed J 1:16

    PubMed Central  PubMed  Google Scholar 

  • Scott LV, Clarke G, Dinan TG (2013) The brain–gut axis: a target for treating stress-related disorders. In: Halaris A, Leonard BE (eds) Inflammation in psychiatry, vol 28. Karger, Basel

    Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. 1936. J Neuropsychiatry Clin Neurosci 10(2):230–231

    Google Scholar 

  • Sharp WG et al (2013) Feeding problems and nutrient intake in children with autism spectrum disorders: a meta-analysis and comprehensive review of the literature. J Autism Dev Disord 43(9):2159–2173

    Google Scholar 

  • Smith AC et al (2012) Maternal gametic transmission of translocations or inversions of human chromosome 11p15.5 results in regional DNA hypermethylation and downregulation of CDKN1C expression. Genomics 99(1):25–35

    CAS  PubMed  Google Scholar 

  • Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4(12):e413

    PubMed Central  PubMed  Google Scholar 

  • Spiller R, Garsed K (2009) Postinfectious irritable bowel syndrome. Gastroenterology 136(6):1979–1988

    PubMed  Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    CAS  PubMed Central  PubMed  Google Scholar 

  • Squires H et al (2011) A systematic review and economic evaluation of cilostazol, naftidrofuryl oxalate, pentoxifylline and inositol nicotinate for the treatment of intermittent claudication in people with peripheral arterial disease. Health Technol Assess 15(40):1–210

    CAS  PubMed  Google Scholar 

  • Sudo N et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558(Pt 1):263–275

    CAS  PubMed  Google Scholar 

  • Suzuki K et al (1983) Effects of crowding and heat stress on intestinal flora, body weight gain, and feed efficiency of growing rats and chicks. Nihon Juigaku Zasshi 45(3):331–338

    CAS  PubMed  Google Scholar 

  • Tack J et al (2006) A controlled crossover study of the selective serotonin reuptake inhibitor citalopram in irritable bowel syndrome. Gut 55(8):1095–1103

    CAS  PubMed  Google Scholar 

  • Tana C et al (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22(5): 512–519, e114–5

    Google Scholar 

  • Tang WY, Ho SM (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8(2):173–182

    PubMed  Google Scholar 

  • Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9(3):591–598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5(11):2516–2522

    CAS  PubMed  Google Scholar 

  • Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401, 1401.e1–1401.e4

    Google Scholar 

  • Timoveyev L et al (2002) Stability to sound stress and changeability in intestinal microflora. Eur Psychiatry 17(Suppl 1):200

    Google Scholar 

  • Toorop PE et al (2012) Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd’s purse). Ann Bot 109(2):481–489

    PubMed  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489(7415):242–249

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587(Pt 17):4153–4158

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ursell LK et al (2012) The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol 129(5):1204–1208

    PubMed Central  PubMed  Google Scholar 

  • Vaishampayan PA et al (2010) Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2:53–66

    PubMed Central  PubMed  Google Scholar 

  • Valles Y et al (2012) Metagenomics and development of the gut microbiota in infants. Clin Microbiol Infect 18(Suppl 4):21–26

    CAS  PubMed  Google Scholar 

  • Van Loo JA (2004) Prebiotics promote good health: the basis, the potential, and the emerging evidence. J Clin Gastroenterol 38(6 Suppl):S70–S75

    PubMed  Google Scholar 

  • van Nood E et al (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    PubMed  Google Scholar 

  • Verdu EF et al (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55(2):182–190

    CAS  PubMed  Google Scholar 

  • Vighi G et al (2008) Allergy and the gastrointestinal system. Clin Exp Immunol 153(Suppl 1):3–6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wall R et al (2010) Impact of administered bifidobacterium on murine host fatty acid composition. Lipids 45(5):429–436

    CAS  PubMed  Google Scholar 

  • Wall R et al (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nutr 95(5):1278–1287

    CAS  PubMed  Google Scholar 

  • Wang L et al (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57(8):2096–2102

    CAS  PubMed  Google Scholar 

  • Weberpals JI, Koti M, Squire JA (2011) Targeting genetic and epigenetic alterations in the treatment of serous ovarian cancer. Cancer Genet 204(10):525–535

    CAS  PubMed  Google Scholar 

  • Weilburg JB (2004) An overview of SSRI and SNRI therapies for depression. Manag Care 13(6 Suppl Depression):25–33

    PubMed  Google Scholar 

  • Williams BL et al (2011) Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One 6(9):e24585

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woods C, Squires M (2011) Health IT in New Jersey: a view from the New Jersey Health IT Coordinator’s office. MD Advis 4(4):18–21

    PubMed  Google Scholar 

  • Wrase J et al (2006) Serotonergic dysfunction: brain imaging and behavioral correlates. Cogn Affect Behav Neurosci 6(1):53–61

    PubMed  Google Scholar 

  • Zucchelli M et al (2011) Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 60(12):1671–1677

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Cryan.

Additional information

Rachel D. Moloney and Lieve Desbonnet contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moloney, R.D., Desbonnet, L., Clarke, G. et al. The microbiome: stress, health and disease. Mamm Genome 25, 49–74 (2014). https://doi.org/10.1007/s00335-013-9488-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9488-5

Keywords

Navigation