Skip to main content
Log in

Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Bursicon was identified in 1965 as a peptide neurohormone that initiates the tanning of the insect cuticle immediately after the shedding of the old one during the final stages of the molting process. Its molecular identity as an approximately 30 kDa bioactive heterodimer consisting of two cystine knot proteins resisted elucidation for 43 years. The sequence of the two bursicon subunits is highly conserved among arthropods, and this conservation extends even to echinoderms. We review the efforts leading to bursicon’s characterization, the identification of its leucine-rich repeat-containing, G protein-coupled receptor (LGR2), and the progress towards revealing its various functions. It is now clear that bursicon regulates different aspects of wing inflation in Drosophila melanogaster besides being involved at various points in the cuticle tanning process in different insects. We also describe the current knowledge of the expression of bursicon in the central nervous system of different insects in large homologous neurosecretory cells, and the changes in its expression during the development of Manduca sexta and D. melanogaster. Although much remains to be learned, the elucidation of its molecular identity and that of its receptor has provided the breakthrough needed for investigating the diverse actions of this critical insect neurohormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The bursZ1140 mutation is a tyrosine to a cysteine change at residue 63 (TAT to TGT) and not a change from threonine to cysteine at position 97 as stated in Dewey et al. 2004.

  2. We will refer to the bilateral cell pair in the ganglia of theVNS of different insects as Cell 27/IN704 (homologs) throughout. For a definition of cells 27/704 see also Mesce and Fahrbach (2002).

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  • Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102:11337–11342

    Article  PubMed  CAS  Google Scholar 

  • Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev. doi:10.1016/j.mod.2008.09.002

  • Ashburner M, Misra S, Roote J, Lewis SE, Blazej R, Davis T, Doyle C, Galle R, George R, Harris N, Hartzell G, Harvey D, Hong L, Houston K, Hoskins R, Johnson G, Martin C, Moshrefi A, Palazzolo M, Reese MG, Spradling A, Tsang G, Wan K, Whitelaw K, Celniker S et al (1999) An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 153:179–219

    PubMed  CAS  Google Scholar 

  • Andersen SO (2005) Cuticular sclerotization and tanning. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Amsterdam, pp 145–170

    Google Scholar 

  • Andersen SO, Peter MG, Roepstorff P (1996) Cuticular sclerotization in insects. Comp Biochem Physiol 113B:689–705

    CAS  Google Scholar 

  • Baker JD, Truman JW (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol 205:2555–2565

    PubMed  CAS  Google Scholar 

  • Butler SA, Laidler P, Porter JR, Kicman AT, Chard T, Cowan DA, Iles RK (1999) The β-subunit of human chorionic gonadotrophin exists as a homodimer. J Mol Endocrinol 22:185–192

    Article  PubMed  CAS  Google Scholar 

  • Cheung CC, Loi PK, Sylwester AW, Lee TD, Tublitz NJ (1992) Primary structure of a cardioactive peptide from the tobacco hawkmoth Manduca sexta. FEBS Lett 313:165–168

    Article  PubMed  CAS  Google Scholar 

  • Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J (2005) Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitam Horm 73:217–282

    Article  PubMed  CAS  Google Scholar 

  • Cottrell CB (1962a) The imaginal ecdysis of blowflies. The control of cuticular hardening and darkening. J Exp Biol 39:395–411

    CAS  Google Scholar 

  • Cottrell CB (1962b) The imaginal ecdysis of blowflies. Detection of the blood-borne darkening factor and determination of some of its properties. J Exp Biol 39:413–430

    Google Scholar 

  • Dai L, Dewey EM, Zitnan D, Luo CW, Honegger HW, Adams ME (2008) Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. J Comp Neurol 506:759–774

    Article  PubMed  CAS  Google Scholar 

  • Davis NT, Homberg U, Dircksen H, Levine RB, Hildebrand JG (1993) Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development. J Comp Neurol 338:612–627

    Article  PubMed  CAS  Google Scholar 

  • Davis TA, Dulcis D, Hildebrand JG (2001) Innervation of the heart and aorta of Manduca sexta. J Comp Neurol 440:245–260

    Article  PubMed  CAS  Google Scholar 

  • Davis MM, OKeefe SL, Primrose DA, Hodgetts RB (2007) A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134:4395–4404

    Article  PubMed  CAS  Google Scholar 

  • Dewey EM, McNabb SL, Ewer J, Kuo GR, Takanishi CL, Truman JW, Honegger HW (2004) Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr Biol 14:1208–1213

    Article  PubMed  CAS  Google Scholar 

  • Dircksen H (1998) Conserved crustacean cardioactive peptide (CCAP) neuronal networks and functions in arthropod evolution. In: Coast GM, Webster SG (eds) Recent advances in arthropod endocrinology, vol 65. Cambridge University Press, London, pp 302–333

    Google Scholar 

  • Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res 263:439–457

    Article  Google Scholar 

  • Draizen TA, Ewer J, Robinow S (1999) Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol 38:455–465

    Article  PubMed  CAS  Google Scholar 

  • Dulcis D, Levine RB, Ewer J (2005) Role of the neuropeptide CCAP in Drosophila cardiac function. J Neurobiol 64:259–274

    Article  PubMed  CAS  Google Scholar 

  • Eriksen KK, Hauser F, Schiott M, Pedersen K-M, Sondergaard L, Grimmelikhuijzen CJP (2000) Molecular cloning, genome organization, developmental regulation, and a knock-out mutant of a novel Leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res 10:924–938

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Truman JW (1996) Increases in cyclic 3′,5′-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide immunoreactive insect neuronal network. J Comp Neurol 370:330–341

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Wang CM, Klukas KA, Mesce KA, Truman JW, Fahrbach SE (1998) Programmed cell death of identified peptidergic neurons involved in ecdysis behavior in the moth, Manduca sexta. J Neurobiol 37:265–280

    Article  PubMed  CAS  Google Scholar 

  • Ewer J, Reynolds S (2002) Neuropeptide control of molting in insects. In: Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT (eds) Hormones, brain and behavior, vol 3, chap 35. Academic Press, San Diego, pp 1–92

  • Fogal W, Fraenkel G (1969) The role of bursicon in melanization and endocuticle formation in the adult fleshfly, Sarcophaga bullata. J Insect Physiol 15:1235–1247

    Article  CAS  Google Scholar 

  • Fox KM, Dias JA, Van Roey P (2001) Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol 15:378–389

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G, Hsiao C (1962) Hormonal and nervous control of tanning in the fly. Science 138:27–29

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel G, Hsiao C (1965) Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J Insect Physiol 11:513–556

    Article  CAS  Google Scholar 

  • Fraenkel G, Hsiao C, Seligman M (1966) Properties of bursicon: an insect protein hormone that controls cuticular tanning. Science 151:91–93

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Scheible I, Honegger HW (1989) Peripheral neurosecretory cells of insects contain a neuropeptide with bursicon-like activity. J Exp Biol 141:453–459

    Google Scholar 

  • Hart CE, Bowen-Pope DF (1990) Platelet-derived growth factor receptor: current views of the two-subunit model. J Invest Dermatol 94:53–57

    Article  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruit fly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19

    Article  PubMed  CAS  Google Scholar 

  • Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP (2008) Genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165

    Article  PubMed  CAS  Google Scholar 

  • Hearn MT, Gomme PT (2000) Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit 13:223–278

    Article  PubMed  CAS  Google Scholar 

  • Herpin A, Badariotti F, Rodet F, Favrel P (2004) Molecular characterization of a new leucine-rich repeat-containing Gprotein coupled receptor from a bivalve mollusk: evolutionary implications. Biochem Biophys Acta 1680:137–144

    PubMed  CAS  Google Scholar 

  • Honegger HW, Market D, Pierce LA, Dewey EM, Kostron B, Wilson M, Choi D, Klukas KA, Mesce KA (2002) Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone. J Comp Neurol 452:163–177

    Article  PubMed  CAS  Google Scholar 

  • Honegger HW, Dewey EM, Kostron B (2004) From bioassays to Drosophila genetics: strategies for characterizing an essential insect neurohormone, bursicon. Symp Biol Hung 55:91–102

    Article  CAS  Google Scholar 

  • Hopkins TL, Krchma LJ, Ahmad SA, Kramer KJ (2000) Pupal cuticle proteins of Manduca sexta: characterization and profiles during sclreotization. Insect Biochem Mol Biol 30:19–27

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Yong Z, Li M, Wang S, Liu W, Couble P, Zhao G, Huang Y (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581:697–701

    Article  PubMed  CAS  Google Scholar 

  • Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 3:391–395

    Article  Google Scholar 

  • Kaltenhauser U, Kellermann J, Andersson K, Lottspeich F, Honegger HW (1995) Purification and partial characterization of bursicon, a cuticle sclerotizing neuropeptide in insects, from Tenebrio molitor. Insect Biochem Mol Biol 25:525–533

    Article  CAS  Google Scholar 

  • Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Gree MM (2007) Tissue remodeling during maturation of the Drosophila wing. Dev Biol 301:178–191

    Article  PubMed  CAS  Google Scholar 

  • Kim YJ, Zitnan D, Galizia CG, Cho KH, Adams ME (2006) A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 16:1395–1407

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Kodama A, Hayasaka Y, Ohta T (2004) Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 131:1597–1606

    Article  PubMed  CAS  Google Scholar 

  • Kostron B, Marquardt K, Kaltenhauser U, Honegger H (1995) Bursicon, the cuticle sclerotizing hormone-comparison of its molecular mass in different insects. J Insect Physiol 41:1045–1053

    Article  CAS  Google Scholar 

  • Kostron B, Kaltenhauser U, Seibel B, Bräunig P, Honegger HW (1996) Localization of bursicon in CCAP-immunoreactive cells in the thoracic ganglia of the cricket Gryllus bimaculatus. J Exp Biol 199:367–377

    PubMed  CAS  Google Scholar 

  • Kostron B, Market D, Kellermann J, Carter CE, Honegger HW (1999) Antisera against Periplaneta americana Cu, Zn-superoxide dismutase (SOD): separation of the neurohormone bursicon from SOD, and immunodetection of SOD in the central nervous system. Insect Biochem Mol Biol 29:861–871

    Article  PubMed  CAS  Google Scholar 

  • Kramer KJ, Hopkins TL (1987) Tyrosine metabolism for insect cuticle tanning. Arch Insect Biochem Physiol 6:279–301

    Article  CAS  Google Scholar 

  • Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25:1067–1080

    Article  CAS  Google Scholar 

  • Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin JL, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392

    Article  CAS  Google Scholar 

  • Koundakjian EJ, Cowan DM, Hardy RW, Becker AH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167:203–206

    Article  PubMed  CAS  Google Scholar 

  • Locke M (2001) The Wigglesworth Lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507

    Article  PubMed  CAS  Google Scholar 

  • Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJP, Park Y (2008) Genomics, transcriptomics, and peptidomics of peptide and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122

    Article  PubMed  CAS  Google Scholar 

  • Luan H, Lemon WC, Peabody NC, Pohl JB, Zelensky PK, Wang D, Nitabach MN, Holmes TC, White BH (2006a) Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J Neurosci 26:573–584

    Article  PubMed  CAS  Google Scholar 

  • Luan HN, Peabody NC, Vinson CR, White BH (2006b) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436

    Article  PubMed  CAS  Google Scholar 

  • Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 102:2820–2825

    Article  PubMed  CAS  Google Scholar 

  • Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579(10):2171–2176

    Article  PubMed  CAS  Google Scholar 

  • Mesce KA, Fahrbach SE (2002) Integration of endocrine signals that regulate insect ecdysis. Front Neuroendocrinol 23:179–199

    Article  PubMed  CAS  Google Scholar 

  • Mills RR, Whitehead DL (1970) Hormonal control of tanning in the American cockroach: changes in blood cell permeability during ecdysis. J Insect Physiol 16:331–340

    Article  CAS  Google Scholar 

  • Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35

    Article  PubMed  CAS  Google Scholar 

  • Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319:1816–1819

    Article  PubMed  CAS  Google Scholar 

  • Natzle JE, Kiger JA Jr, Green MM (2008) Bursicon signaling mutations separate epithelial-mesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation. Genetics 180:885–893

    Article  PubMed  Google Scholar 

  • Nishi S, Hsu SY, Zell K, Hsueh AJW (2000) Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinology 141:4081–4090

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Schroeder AJ, Helfrich-Förster C, Jackson FR, Ewer J (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific effects in execution and circadian timing of ecdysis behavior. Development 130:2645–2656

    Article  PubMed  CAS  Google Scholar 

  • Peabody NC, Diao F, Luan H, Wang H, Dewey EM, Honegger HW, White BH (2008) Bursicon functions within the Drosophila central nervous system to modulate wing expansion behavior, hormone secretion, and cell death. J Neurosci (accepted)

  • Ren P, Lim C-S, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274:1389–1391

    Article  PubMed  CAS  Google Scholar 

  • Reynolds SE (1976) Hormonal regulation of cuticle extensibility in newly emerged adult blowflies. J Insect Physiol 22:529–534

    Article  PubMed  CAS  Google Scholar 

  • Reynolds S (1977) Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: effects of eclosion hormone and bursicon. J Exp Biol 70:27–39

    CAS  Google Scholar 

  • Reynolds SE (1983) Bursicon. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss, NY, pp 235–348

    Google Scholar 

  • Reynolds SE, Taghert P, Truman JW (1979) Eclosion hormone and bursicon titres and the onset of hormonal responsiveness during the last day of adult development in Manduca sexta (L). J Exp Biol 78:77–86

    Google Scholar 

  • Robertson HM, Navik JA, Walden KKO, Honegger HW (2007) The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing. Genetics 176:1–3

    Article  Google Scholar 

  • Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S (1990) Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 12A:2169–2187

    Article  Google Scholar 

  • Seligman IM (1980) Bursicon. In: Miller TA (ed) Neurohormonal techniques in insects. Springer, Berlin, pp 137–153

    Google Scholar 

  • Seligman IM, Friedman S, Fraenkel G (1969) Bursicon mediation of tyrosine hydroxylation during tanning in their adult cuticle in the fly Sarcophaga bullata. J Insect Physiol 15:553–562

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Truman JW (1982) Identification of the bursicon-containing neurones in abdominal ganglia of the tobacco hornworm, Manduca sexta. J Exp Biol 98:385–401

    CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Togawa T, Dunn WA, Emmons AC, Nagao J, Willis JH (2008) Developmental expression patterns of cuticular protein genes with the R&R consensus from Anopheles gambiae. Insect Biochem Mol Biol 38:508–519

    Article  PubMed  CAS  Google Scholar 

  • Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Physiol 348:80–93

    CAS  Google Scholar 

  • Truman JW (2005) Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology. Vitam Horm 73:1–30

    Article  PubMed  CAS  Google Scholar 

  • Tublitz NJ, Truman JW (1985) Insect cardioactive peptides. II. Neurohormonal control of heart activity by two cardioacceleratory peptides in the tobacco hawkmoth, Manduca sexta. J Exp Biol 114:381–395

    PubMed  CAS  Google Scholar 

  • Tublitz NJ, Sylwester AW (1990) Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons. J Neurosci 10:161–168

    PubMed  CAS  Google Scholar 

  • Van Loy T, Van Hiel MB, Vandersmissen HP, Poels J, Mendive F, Vassart G, Vanden Broeck J (2007) Evolutionary conservation of bursicon in the animal kingdom. Gen Comp Endocrinol 153:59–63

    Article  PubMed  Google Scholar 

  • Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco L, Vassart G, Vanden Broeck J (2008) Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol 155:14–21

    Article  PubMed  Google Scholar 

  • Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signal molecules. Mol Endocrinol 15:681–694

    Article  PubMed  CAS  Google Scholar 

  • Wappner P, Kramer KJ, Hopkins TL, Merritt M, Schaefer J, Quesada-Allué LA (1995) White pupa: a Ceratitis capitata mutant lacking catecholamines for tanning the puparium. Insect Biochem Mol Biol 25:365–373

    Article  CAS  Google Scholar 

  • Weber F (1995) Cyclic layer deposition in the cockroach (Blaberus craniifer) endocuticle: a circadian rhythm in leg pieces cultures in vitro. J Insect Physiol 41:153–161

    Article  CAS  Google Scholar 

  • Weber F, Hassenrück R (2007) Secretion of a differentiated cuticle after apolysis in vitro in cockroach leg integument. http://nbn-resolving.de/urn:nbn:de:hbz:6-88519558955

  • Wilcockson DC, Webster SG (2008) Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas. Gen Comp Endocrinol 156:113–125

    PubMed  CAS  Google Scholar 

  • Willis JH (1996) Metamorphosis of the cuticle, its proteins and their genes. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis, postembryonic programming of gene expression in amphibian and insects cells. Academic Press, New York, pp 253–282

    Google Scholar 

  • Willis JH, Iconomidoiu VA, Smith RF, Hamodrakas SJ (2005) Cuticular proteins. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Amsterdam, pp 79–110

    Google Scholar 

  • Woodruff III EA, Broadie K, Honegger HW (2008) Two neuropeptides co-packaged in a single neurosecretory vesicle. Peptides. doi:10.1016/j.peptides.2008.08.023

  • Wright TRF (1987) The genetics of biogenic amine metabolism, sclerotiztion, and melanization in Drosophila melanogaster. Adv Genet 24:127–222

    Article  PubMed  CAS  Google Scholar 

  • Zitnan D, Adams ME (2005) Neuroendocrine regulation of insect ecdysis. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier Pergamon, Amsterdam, pp 1–60

    Google Scholar 

Download references

Acknowledgments

The identification of partial peptides of P. americana bursicon was only possible due to the relentless help of many undergraduate students at Vanderbilt University, who dissected thousands of nervous systems for bursicon’s purification. We are indebted to many colleagues for evaluating appropriate chapters of the review and adding unpublished data. They include Dr. P. Braunig, Dr. A. J. Hsueh, Dr. S. Muthukrishnan, Dr. J. E. Natzle, Dr. Y. Park, Dr. S. G. Webster, Dr. B. White and Dr. J. H Willis. Research from our labs was supported by NSF grants (HWH and JE) and FONDECYT grant 1071079 (JE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Willi Honegger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honegger, HW., Dewey, E.M. & Ewer, J. Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity. J Comp Physiol A 194, 989–1005 (2008). https://doi.org/10.1007/s00359-008-0386-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0386-3

Keywords

Navigation