Skip to main content

Advertisement

Log in

Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer's disease

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is a disorder of brain self organization associated with morphodysregulation at the synaptic level. Disturbances follow a hierarchical spatio-temporal pattern throughout the cortex and involve the re-activation of developmental molecular programs. The large glycoprotein reelin, synthesized by Cajal-Retzius (CR) cells, is an important component of a signaling pathway involved in embryonic development and modulation of synaptic circuitry, but is also implicated in the pathogenetic cascade in AD. Although the majority of CR cells sequentially disappears from the postnatal cortical layer I, a few of them persist in the normal adult brain. They continue to produce reelin, express a variety of other proteins, and are characterized by a typical morphology. Recently, CR cells have been reported to be altered in number and morphology in a variety of neurological and psychiatric diseases linked to maldevelopment. In the present study we show that reelin-positive CR cells persist in the layer I of the entorhinal cortex in normal senescent brains and are also preserved in AD. The majority of CR cells in AD is morphologically and cytochemically—as revealed by double labeling with calcium-binding proteins—indistinguishable from normal cases, suggesting that they are not dramatically altered in the entorhinal cortex of AD patients. Nevertheless, CR cells seem to be partially affected by the formation of paired helical filaments, indicating subtle changes that are suggested to be a result rather than a cause of the pathogenetic cascade of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Angevine JB, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Google Scholar 

  2. Arendt T (2001) Alzheimer's disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102:723–765

    Article  CAS  PubMed  Google Scholar 

  3. Arendt T, Brückner MK, Gertz HJ, Marcova L (1998) Cortical distribution of neurofibrillary tangles in Alzheimer's disease matches the pattern of neurones that retain their capacity of plastic remodeling in the adult brain. Neuroscience 83:991–1002

    Google Scholar 

  4. Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Deglon N, Kostic C, Zurn A, Aebischer P (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170:48–62

    Article  CAS  PubMed  Google Scholar 

  5. Baloyannis S, Costa V (2000) The Retzius-Cajal neuron in Alzheimer's disease. Brain Pathol 10:516

    Google Scholar 

  6. Belichenko PV, Vogt Weisenhorn DM, Myklóssy J, Celio MR (1995) Calretinin-positive Cajal-Retzius cells persist in the adult human neocortex. Neuroreport 6:1869–1874

    CAS  PubMed  Google Scholar 

  7. Bothwell M, Giniger E (2000) Alzheimer's disease: neurodevelopment converges with neurodegeneration. Cell 102:271–273

    CAS  PubMed  Google Scholar 

  8. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  9. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    Article  CAS  PubMed  Google Scholar 

  10. Celio MR, Baier W, Scharer L, Viragh PA de, Gerday C (1988) Monoclonal antibodies directed against the calcium-binding protein Parvalbumin. Cell Calcium 9:81–86

    CAS  PubMed  Google Scholar 

  11. Celio MR, Baier W, Scharer L, Gregersen HJ, Viragh PA de, Norman AW (1990) Monoclonal antibodies directed against the calcium-binding protein Calbindin D-28k. Cell Calcium 11:599–602

    CAS  PubMed  Google Scholar 

  12. De Bergeyck V, Naerhuyzen B, Goffinet AM, Lambert de Rouvroit C (1998) A panel of monoclonal antibodies against reelin, the extracellular matrix protein defective in reeler mutant mice. J Neurosci Methods 82:17–24

    Article  PubMed  Google Scholar 

  13. Del Rio JA, Martinez A, Fonseca M, Auladell C, Soriano E (1995) Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with Calretinin antibody. Cereb Cortex 5:13–21

    PubMed  Google Scholar 

  14. Derer P, Derer M (1990) Cajal-Retzius cell ontogenesis and death in mouse brain visualized with horseradish peroxidase and electron microscopy. Neuroscience 3:839–856

    Article  Google Scholar 

  15. Eriksson SH, Thom M, Heffernan J, Lin WR, Harding BN, Squier MV, Sisodiya SM (2001) Persistent Reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124:1350–1361

    Article  CAS  PubMed  Google Scholar 

  16. Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5:654–663

    Article  CAS  PubMed  Google Scholar 

  17. Fonseca M, Soriano E (1995) Calretinin-immunoreactive neurons in the normal human temporal cortex and in Alzheimer's disease. Brain Res 691:83–91

    Article  CAS  PubMed  Google Scholar 

  18. Frotscher M (1997) Dual role of Cajal-Retzius cells and reelin in cortical development. Cell Tissue Res 290:315–322

    Article  CAS  PubMed  Google Scholar 

  19. Glezer II, Hof PR, Morgane PJ (1992) Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181–188

    Article  CAS  PubMed  Google Scholar 

  20. Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267:564–569

    CAS  PubMed  Google Scholar 

  21. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E, DiGiorgi Gerevini V (2000) Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57:1061–1069

    Article  CAS  PubMed  Google Scholar 

  22. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    CAS  PubMed  Google Scholar 

  23. Hall KS, Gao S, Unverzagt FW, Hendrie HC (2000) Low education and childhood rural residence: risk for Alzheimer's disease in African Americans. Neurology 54:95–99

    CAS  PubMed  Google Scholar 

  24. Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat Rev Neurosci 2000 1:51–58

    Article  CAS  Google Scholar 

  25. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489

    CAS  PubMed  Google Scholar 

  26. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    Article  CAS  PubMed  Google Scholar 

  27. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzonov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas,GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  CAS  PubMed  Google Scholar 

  28. Insausti R, Tunon T, Sobreviela T, Insausti AM, Gonzalo LM (1995) The human entorhinal cortex: a cytochemical analysis. J Comp Neurol 355:171–198

    CAS  PubMed  Google Scholar 

  29. Kagi U, Berchtold MW, Heizmann CW (1987) Ca2+-binding Parvalbumin in rat testis. Characterization, localization, and expression during development. J Biol Chem 262:7314–7320

    CAS  PubMed  Google Scholar 

  30. Kalus P, Senitz D, Beckmann H (1999) Disturbances of corticogenesis in schizophrenia: morphological findings provide new evidence for the maldevelopmental hypothesis. Neuropsychobiology 40:1–13

    Article  CAS  PubMed  Google Scholar 

  31. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Google Scholar 

  32. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    CAS  PubMed  Google Scholar 

  33. Lewis DA, Campbell MJ, Morrison JH (1986) An immunohistochemical characterization of somatostatin-28 and somatostatin-281–12 in monkey prefrontal cortex. J Comp Neurol 248:1–18

    CAS  PubMed  Google Scholar 

  34. Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152:109–126

    Google Scholar 

  35. Marín-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    Article  PubMed  Google Scholar 

  36. Martín R, Gutiérrez A, Penafiel A, Marín-Padilla M, Calle A de la (1999) Persistence of Cajal-Retzius cells in the adult human cerebral cortex: an immunohistochemical study. Histol Histopathol 14:487–490

    PubMed  Google Scholar 

  37. Martinez-Cerdeno V, Galazo MJ, Cavada C, Clasca F (2002) Reelin immunoreactivity in the adult primate brain: intracellular localization in projecting and local circuit neurons of the cerebral cortex, hippocampus and subcortical regions. Cereb Cortex. 12:1298–1311

    Google Scholar 

  38. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34:939–944

    PubMed  Google Scholar 

  39. Meyer G (2001) Human neocortical development: the importance of embryonic and fetal events. Neuroscientist 7:303–313

    CAS  PubMed  Google Scholar 

  40. Meyer G, Goffinet AM (1998) Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40

    Article  CAS  PubMed  Google Scholar 

  41. Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944

    Article  CAS  PubMed  Google Scholar 

  42. Meyer G, Goffinet AM, Fairén A (1999) What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775

    Article  CAS  PubMed  Google Scholar 

  43. Meyer G, De Rouvroit CL, Goffinet AM, Wahle P (2003) Disabled-1 mRNA and protein expression in developing human cortex. Eur J Neurosci 17:517–525

    Article  PubMed  Google Scholar 

  44. Mienville JM (1999) Cajal-Retzius cell physiology: just in time to bridge the 20th century. Cereb Cortex 9:776–782

    Article  CAS  PubMed  Google Scholar 

  45. Mikkonen M, Soininen H, Pitkänen A (1997) Distribution of Parvalbumin-, Calretinin-, and Calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. J Comp Neurol 388:64–88

    Article  CAS  Google Scholar 

  46. Mikkonen M, Alafuzoff I, Tapiola T, Soininen H, Miettinen R (1999) Subfield- and layer-specific changes in parvalbumin-, calretinin-, and calbindin-D28k-immunoreactivity in the entorhinal cortex in Alzheimer's disease. Neuroscience 92:515–532

    Article  CAS  PubMed  Google Scholar 

  47. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, Belle G van, Berg L (1991) The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41:479–486

    CAS  PubMed  Google Scholar 

  48. Moceri VM, Kukull WA, Emanuel I, Belle G van, Larson EB (2000) Early-life risk factors and the development of Alzheimer's disease. Neurology 54:415–420

    CAS  PubMed  Google Scholar 

  49. Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, Ikenaka K, Yamamoto H, Mikoshiba K (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14:899–912

    CAS  PubMed  Google Scholar 

  50. Parkkinen L, Soininen H, Laakso M, Alafuzoff I (2001) Alpha-synuclein pathology is highly dependent on the case selection. Neuropathol Appl Neurobiol 27:314–325

    Article  CAS  PubMed  Google Scholar 

  51. Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci. 23:126–131

    Google Scholar 

  52. Perez-Garcia CG, Gonzalez-Delgado FJ, Suarez-Sola ML, Castro-Fuentes R, Martin-Trujillo JM, Ferres-Torres R, Meyer G (2001) Reelin-immunoreactive neurons in the adult vertebrate pallium. J Chem Neuroanat 21:41–51

    Article  CAS  PubMed  Google Scholar 

  53. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA 95:3221–3226

    Article  CAS  PubMed  Google Scholar 

  54. Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HJ (1999) Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proc Natl Acad Sci USA 96:3217–3222

    Article  CAS  PubMed  Google Scholar 

  55. Pickel VM, Heras A (1996) Ultrastructural localization of Calbindin-D28k and GABA in the matrix compartment of the rat caudate-putamen nuclei. Neuroscience 71:167–178

    Article  CAS  PubMed  Google Scholar 

  56. Rice DS, Nusinowitz S, Azimi AM, Martinez A, Soriano E, Curran T (2001) The reelin pathway modulates the structure and function of retinal synaptic circuitry. Neuron 31:929–941

    CAS  PubMed  Google Scholar 

  57. Schnell AS, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47:719–730

    CAS  PubMed  Google Scholar 

  58. Schwaller B, Buchwald P, Blümcke I, Celio MR (1993) Characterization of a polyclonal antiserum against the purified human recombinant calcium-binding protein Calretinin. Cell Calcium 14:639–648

    CAS  PubMed  Google Scholar 

  59. Seligman AM, Wasserkrug HL, Hanker JS (1966) A new staining method (OTO) for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J Cell Biol 30:24–43

    Google Scholar 

  60. Super H, Perez Sust P, Soriano E (1997) Survival of Cajal-Retzius cells after cortical lesions in newborn mice: a possible role for Cajal-Retzius cells in brain repair. Brain Res Dev Brain Res 98:9–14

    CAS  PubMed  Google Scholar 

  61. Tsukamoto K, Watanabe T, Matsushima T, Kinoshita M, Kato H, Hashimoto Y, Kurokawa K, Teramoto T (1993) Determination by PCR-RFLP of apo E genotype in a Japanese population. J Lab Clin Med 121:598–602

    CAS  PubMed  Google Scholar 

  62. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E, Sweatt, JD, Herz J (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    Article  CAS  PubMed  Google Scholar 

  63. West, MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    CAS  PubMed  Google Scholar 

  64. Wirths O, Multhaup G, Czech C, Blanchard V, Tremp G, Pradier L, Beyreuther K, Bayer TA (2001) Reelin in plaques of beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci Lett 316:145–148

    Article  CAS  PubMed  Google Scholar 

  65. Zecevic N, Rakic P (2001) Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607–5619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. A.M. Goffinet (University of Namur Medical School, Belgium) for the generous donation of the reelin antibody mAb 142. Mrs. H. Gruschka (University of Leipzig), Mrs. T. Kauppinen and Mrs. A.-L. Gidlund (University of Kuopio) are warmly acknowledged for their excellent technical assistance. Supported by the Bundesministerium für Bildung und Forschung (program NBL3, No.: 01ZZ0106); the European Commission (Project QLK6-CT-1999-02112); the Health Research Council of the Academy of Finland; Deutscher Akademischer Austauschdienst (DAAD, Project 313-SF-ppp-7–00/1); and Interdisziplinäres Zentrum für Klinische Forschung (IZKF) at the University of Leipzig (01KS9504, Project C1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anett Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, A., Miettinen, R., Stieler, J. et al. Reelin-immunoreactive Cajal-Retzius cells: the entorhinal cortex in normal aging and Alzheimer's disease. Acta Neuropathol 106, 291–302 (2003). https://doi.org/10.1007/s00401-003-0729-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0729-7

Keywords

Navigation