Skip to main content

Advertisement

Log in

Glial reactions and the clearance of amyloid β protein in the brains of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Although the amyloid β protein (Aβ) E693Q mutation enhances Aβ fibrillization in vitro and cerebral amyloid angiopathy (CAA) in vivo, brain parenchymal Aβ deposition and tau pathology in hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D) are limited. To evaluate whether clearance of Aβ by glial cells may play a role in this regard, this immunohistochemical study of frontal cortex of 14 HCHWA-D autopsy brains was performed using double staining with glial markers and end-specific antibodies to Aβx–42 (Aβ42) and Aβx–40 (Aβ40). Tau pathology was also assessed. Numerous microglia and/or astrocytes carrying cytoplasmic Aβ42+40 granules were scattered among non-fibrillar (Congo red-negative) Aβ deposits, i.e., clouds, fine diffuse plaques, and Aβ42+40 dense diffuse plaques. On the other hand, activated microglia and reactive astrocytes associated with fibrillar (Congo red-positive) Aβ deposition, i.e., Aβ42+40+ dense diffuse plaques and CAA invading the parenchyma, were virtually devoid of Aβ granules. Tau pathology was scant and most frequently associated with CAA. These results suggest that relatively non-fibrillar parenchymal Aβ deposits may be liable to glial clearance. Aβ sequestration by glial cells may be a factor limiting the levels of neurotoxic soluble Aβ oligomers in HCHWA-D brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–D
Fig. 2A–D
Fig. 3A–D
Fig. 4A–F
Fig. 5A–C

Similar content being viewed by others

References

  1. Akiyama H, Schwab C, Kondo H, Mori H, Kametani F, Ikeda K, McGeer PL (1996) Granules in glial cells of patients with Alzheimer’s disease are immunopositive for C-terminal sequences of beta-amyloid protein. Neurosci Lett 206:169–172

    Article  CAS  PubMed  Google Scholar 

  2. Akiyama H, Mori H, Saido T, Kondo H, Ikeda K, McGeer PL (1999) Occurrence of the diffuse amyloid β-protein (Aβ) deposits with numerous Aβ-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia 25:324–331

    Article  CAS  PubMed  Google Scholar 

  3. Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD (1996) Scavenging of Alzheimer’s amyloid β-protein by microglia in culture. J Neurosci Res 43:190–202

    Article  CAS  PubMed  Google Scholar 

  4. Austen BM, Manca MF, Siam AK, El-Agnaf OMA (2000) Responses of microglia to β-amyloid of the Alzheimer’s and HCHWA-D types may be related to fibril morphology. Neuroinflammation in Alzheimer’s disease. Abstracts of ‘A neurobiology of aging’ conference, Washington DC, 7–8 July 2000. Abstr. no. 2.11

  5. Bard F, Cannon C, Barbour R, Burke R-L, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  6. Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T (2003) Epitope and isotype specificities of antibodies to β-amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA 100:2023–2028

    Article  CAS  PubMed  Google Scholar 

  7. Bornebroek M, Haan J, Bakker E, Roos RAC (2000) Clinical and genetic aspects of hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWA-D). In: Verbeek MM, Waal RMW de, Vinters HV (eds) Cerebral amyloid angiopathy in Alzheimer’s disease and related disorders. Kluwer, London, pp 103–119

  8. Chu T, Tran T, Yang F, Beech W, Cole GM, Frautschy SA (1998) Effect of chloroquine and leupeptin on intracellullar accumulation of amyloid-beta (Aβ) 1–42 peptide in a murine N9 microglial cell line. FEBS Lett 436:439–444

    Article  CAS  PubMed  Google Scholar 

  9. Clements A, Walsh DM, Williams CH, Allsop D (1993) Effects of the mutations Glu22 to Gln and Ala21 to Gly on the aggregation of a synthetic fragment of the Alzheimer’s amyloid β/A4 peptide. Neurosci Lett 161:17–20

    Article  CAS  PubMed  Google Scholar 

  10. De Jonghe C, Zehr C, Yager D, Prada C-M, Younkin S, Hendriks L, Van Broeckhoven C, Eckman CB (1998) Flemish and Dutch mutations in amyloid β precursor protein have different effects on amyloid β secretion. Neurobiol Dis 5:281–286

    Article  PubMed  Google Scholar 

  11. DeWitt DA, Perry G, Cohen M, Doller C, Silver J (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol 149:329–340

    Article  CAS  PubMed  Google Scholar 

  12. El Hachimi KH, Foncin JF (1994) Do microglial cells phagocytose the beta/A4-amyloid senile plaque core of Alzheimer disease. CR Acad Sci III 317:445–451

    Google Scholar 

  13. El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD (1996) Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils. Nature 382:716–719

    PubMed  Google Scholar 

  14. Fraser PE, Nguyen JT, Inouye H, Surewicz WK, Selkoe DJ, Podlisny MB, Kirscner DA (1992) Fibril formation by primate, rodent, and Dutch-hemorrhagic analogues of Alzheimer amyloid β-protein. Biochemistry 31:10716–10723

    PubMed  Google Scholar 

  15. Funato H, Yoshimura M, Yamazaki T, Saido TC, Ito Y, Yokofujita J, Okeda R, Ihara Y (1998) Astrocytes containing amyloid β-protein(Aβ)-positive granules are associated with Aβ40-positive diffuse plaques in the aged human brain. Am J Pathol 152:983–992

    CAS  PubMed  Google Scholar 

  16. Hansen LA, Armstrong DM, Terry RD (1987) An immunohistochemical quantification of fibrous astrocytes in the aging human cortex. Neurobiol Aging 8:1–6

    Article  CAS  PubMed  Google Scholar 

  17. Herx LM, Yong VW (2001) Interleukin-1β is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol 60:961–971

    CAS  PubMed  Google Scholar 

  18. Horikoshi Y, Sasaki A, Taguchi N, Maeda M, Tsukagoshi H, Sato K, Yamaguchi H (2003) Human GLUT5 immunolabeling is useful for evaluating microglial status in neuropathological study using paraffin sections. Acta Neuropathol 105:157–162

    CAS  PubMed  Google Scholar 

  19. Husemann J, Silverstein SC (2001) Expression of scavenger receptor class B, type 1, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain. Am J Pathol 158:825–832

    CAS  PubMed  Google Scholar 

  20. Husemann J, Loike JD, Kodama T, Silverstein SC (2001) Scavenger receptor class B type I (SR-BI) mediates adhesion of neonatal murine microglia to fibrillar beta-amyloid. J Neuroimmunol 114:142–150

    Article  CAS  PubMed  Google Scholar 

  21. Husemann J, Loike JD, Lu E, Silverstein SC, Wyss-Coray T (2002) Binding, uptake and degradation of Aβ 1–42 by adult murine astrocytes. Neurobiol Aging 23:S14 (Abstr. no. 54)

    Google Scholar 

  22. Hyman BT (1997) The neuropathological diagnosis of Alzheimer’s disease: clinical-pathological studies. Neurobiol Aging 18:S27–32

    Article  CAS  PubMed  Google Scholar 

  23. Jantzen PT, Connor KE, DiCarlo G, Wenk GL, Wallace JL, Rojiani AM, Coppola D, Morgan D, Gordon MN (2002) Microglial activation and β-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci 22:2246–2254

    CAS  PubMed  Google Scholar 

  24. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, Van Duinen SG, Bots GThAM, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    CAS  PubMed  Google Scholar 

  25. Maat-Schieman MLC, Van Duinen SG, Rozemuller AJM, Haan J, Roos RAC (1997) Association of vascular amyloid β and cells of the mononuclear phagocyte system in hereditary cerebral hemorrhage with amyloidosis (Dutch) and Alzheimer’s disease. J Neuropathol Exp Neurol 56:273–284

    CAS  PubMed  Google Scholar 

  26. Maat-Schieman MLC, Yamaguchi H, Van Duinen SG, Natté R, Roos RAC (2000) Age-related plaque morphology and C-terminal heterogeneity of amyloid β in Dutch-type hereditary cerebral hemorrhage with amyloidosis. Acta Neuropathol 99:409–419

    Article  CAS  PubMed  Google Scholar 

  27. McGeer EG, McGeer PL (2003) Inflammatory processes in Alzheimer’s disease. Prog Neuropsychpharmacol Biol Psychiatry 27:741–749

    Article  CAS  Google Scholar 

  28. Monroe OR, Mackic JB, Yamada S, Segal MB, Ghiso J, Maurer C, Calero M, Frangione B, Zlokovic BV (2002) Substitution at codon 22 reduces clearance of Alzheimer’s amyloid-β peptide from the cerebrospinal fluid and prevents its transport from the central nervous system into blood. Neurobiol Aging 23:405–412

    Article  CAS  PubMed  Google Scholar 

  29. Natté R, Yamaguchi H, Maat-Schieman MLC, Prins FA, Neeskens P, Roos RAC, Van Duinen SG (1999) Ultrastructural evidence of early non-fibrillar Aβ42 in the capillary basement membrane of patients with hereditary cerebral hemorrhage with amyloidosis, Dutch type. Acta Neuropathol 98:577–582

    Article  PubMed  Google Scholar 

  30. Natté R, Maat-Schieman ML, Haan J, Bornebroek M, Roos RA, Duinen SG van (2001) Dementia in hereditary cerebral hemorrhage with amyloidosis-Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol 50:765–772

    Article  PubMed  Google Scholar 

  31. Nicoll JAR, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nat Med 9:448–452

    Article  PubMed  Google Scholar 

  32. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L (2001) The ‘Arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced Aβ protofibril formation. Nat Neurosci 4:887–893

    Article  CAS  PubMed  Google Scholar 

  33. Overmeyer M, Helisalmi S, Soininen H, Laakso M, Riekkinen P Sr, Alafuzoff I (1999) Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol 97:383–392

    Article  PubMed  Google Scholar 

  34. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 17:553–565

    CAS  PubMed  Google Scholar 

  35. Paresce DM, Chung H, Maxfield FR (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid β-protein by microglial cells. J Biol Chem 272:29390–29397

    Article  CAS  PubMed  Google Scholar 

  36. Prelli F, Levy E, Duinen SG van, Bots GTAM, Luyendijk W, Frangione B (1990) Expression of a normal and a variant Alzheimer’s β-protein gene in amyloid of hereditary cerebral hemorrhage, Dutch type: DNA and protein diagnostic assays. Biochem Biophys Res Commun 170:301–307

    CAS  PubMed  Google Scholar 

  37. Rogers J, Lue L-F (2001) Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer’s disease. Neurochem Int 39:333–340

    Article  CAS  PubMed  Google Scholar 

  38. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177

    CAS  PubMed  Google Scholar 

  39. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  40. Selkoe DJ (2002) Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J Clin Invest 110:1375–1381

    Article  CAS  PubMed  Google Scholar 

  41. Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RCA, Younkin SG, Brunden KR (1995) Amyloid β protein (Aβ) removal by neuroglial cells in culture. Neurobiol Aging 16:737–745

    Article  CAS  PubMed  Google Scholar 

  42. Shin R-W, Ogino K, Kondo A, Saido TC, Trojanowski JQ, Kitamoto T, Tateishi J (1997) Amyloid β-protein (Aβ) 1–40 but not Aβ1–42 contributes to the experimental formation of Alzheimer disease amyloid fibrils in rat brain. J Neurosci 17:8187–8193

    CAS  PubMed  Google Scholar 

  43. Sian AK, Frears ER, El-Agnaf OMA, Patel BP, Manca MF, Siligardi G, Hussain R, Austen BM (2000) Oligomerization of β-amyloid of the Alzheimer’s type and the Dutch-cerebral-haemorrhage types. Biochem J 349:299–308

    Article  CAS  PubMed  Google Scholar 

  44. Stalder M, Deller T, Staufenbiel M, Jucker M (2001) 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 22:427–434

    Article  CAS  PubMed  Google Scholar 

  45. Stenh C, Nilsberth C, Hammarbäck J, Engvall B, Näslund J, Lannfelt L (2002) The Arctic mutation interferes with processing of the amyloid precursor protein. Neuroreport 13:1857–1860

    Article  CAS  PubMed  Google Scholar 

  46. Thal DR, Härtig W, Schober R (1999) Diffuse plaques in the molecular layer show intracellular Aβ8–17-immunoreactive deposits in subpial astrocytes. Clin Neuropathol 18:226–231

    CAS  PubMed  Google Scholar 

  47. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid β-protein (Aβ)-containing astrocytes are located preferentially near N-terminal-truncated Aβ deposits in the human entorhinal cortex. Acta Neuropathol 100:608–617

    Article  CAS  PubMed  Google Scholar 

  48. Tsubuki S, Takaki Y, Saido TC (2003) Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. Lancet 361:1957–1958

    Article  CAS  PubMed  Google Scholar 

  49. Van Duinen SG, Castaño EM, Prelli F, Bots GTAM, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci USA 84:5991–5994

    PubMed  Google Scholar 

  50. Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid beta-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    Article  CAS  PubMed  Google Scholar 

  51. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    CAS  PubMed  Google Scholar 

  52. Watson DJ, Selkoe DJ, Teplow DB (1999) Effects of the amyloid precursor protein Glu693→Gln ‘Dutch’ mutation on the production and stability of amyloid β-protein. Biochem J 340:703–709

    Article  CAS  PubMed  Google Scholar 

  53. Weller RO, Massey A, Newman TA, Hutchings M, Kuo Y-M, Roher AE (1998) Cerebral amyloid angiopathy. Amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    Google Scholar 

  54. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anakov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nat Med 9:453–457

    Article  CAS  PubMed  Google Scholar 

  55. Yamaguchi H, Sugihara S, Ogawa A, Saido TC, Ihara Y (1998) Diffuse plaques associated with astroglial amyloid β protein, possibly showing a disappearing stage of senile plaques. Acta Neuropathol 95:217–222

    CAS  PubMed  Google Scholar 

  56. Yamaguchi H, Maat-Schieman MLC, Duinen SG van, Prins FA, Neeskens P, Natté R, Roos RAC (2000) Amyloid β protein (Aβ) starts to deposit as plasma membrane-bound form in diffuse plaques of brains from hereditary cerebral hemorrhage with amyloidosis-Dutch type, Alzheimer disease and nondemented aged subjects. J Neuropathol Exp Neurol 59:723–732

    CAS  PubMed  Google Scholar 

  57. Yamaguchi H, Sugihara S, Ogawa A, Oshima N, Ihara Y (2001) Alzheimer β amyloid deposition enhanced by ApoE ε4 gene precedes neurofibrillary pathology in the frontal association cortex of nondemented senior subjects. J Neuropathol Exp Neurol 2001:731–739

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Klaas van de Ham and Mr. Gerard van de Giessen for preparation of the figures. H. Yamaguchi was supported by Stichting Rotary Holland and a Grant-in-Aid for Scientific Research I from the Ministry of Education, Science, Sports and Culture, Japan, and a grant from the Takeda Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion L. C. Maat-Schieman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maat-Schieman, M.L.C., Yamaguchi, H., Hegeman-Kleinn, I.M. et al. Glial reactions and the clearance of amyloid β protein in the brains of patients with hereditary cerebral hemorrhage with amyloidosis-Dutch type. Acta Neuropathol 107, 389–398 (2004). https://doi.org/10.1007/s00401-004-0824-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0824-4

Keywords

Navigation