Skip to main content
Log in

The thalamus and schizophrenia: current status of research

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The thalamus provides a nodal link for multiple functional circuits that are impaired in schizophrenia (SZ). Despite inconsistencies in the literature, a meta analysis suggests that the volume of the thalamus relative to that of the brain is decreased in SZ. Morphometric neuroimaging studies employing deformation, voxel-based and region of interest methodologies suggest that the volume deficit preferentially affects the thalamic regions containing the anterior and mediodorsal nuclei, and the pulvinar. Postmortem design-based stereological studies have produced mixed results regarding volume and neuronal deficits in these nuclei. This review examines those aspects of thalamic circuitry and function that suggest salience to SZ. Evidence for anomalies of thalamic structure and function obtained from postmortem and neuroimaging studies is then examined and directions for further research proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akbarian S, Vinuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    PubMed  CAS  Google Scholar 

  2. Alelu-Paz R, Gimenez-Amaya JM (2007) Chemical parcellation of the anterior thalamic nuclei in the human brain. J Neural Transm 114:969–981. doi:10.1007/s00702-007-0633-8

    PubMed  CAS  Google Scholar 

  3. Alelu-Paz R, Gimenez-Amaya JM (2008) The mediodorsal thalamic nucleus revisited and schizophrenia. J Psychiatry Neurosci (in press)

  4. Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 31:106–112. doi:10.1016/S0165-0173(99)00027-2

    PubMed  CAS  Google Scholar 

  5. Andreasen NC, Arndt S, Swayze V, Cizadlo T, Flaum M, Oleary D et al (1994) Thalamic abnormalities in schizophrenia visualized through magnetic-resonance image averaging. Science 266:294–298. doi:10.1126/science.7939669

    PubMed  CAS  Google Scholar 

  6. Andreasen NC, Paradiso S, O’Leary DS (1998) “Cognitive dysmetria” as an integrative theory of schizophrenia: a dysfunction in cortical–subcortical–cerebellar circuitry? Schizophr Bull 24:203–218

    PubMed  CAS  Google Scholar 

  7. Ardekani BA, Nierenberg J, Hoptman MJ, Javitt DC, Lim KO (2003) MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport 14:2025–2029. doi:10.1097/00001756-200311140-00004

    PubMed  Google Scholar 

  8. Barkataki I, Kumari V, Das M, Taylor P, Sharma T (2006) Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behav Brain Res 169:239–247. doi:10.1016/j.bbr.2006.01.009

    PubMed  Google Scholar 

  9. Bartko JJ, Pulver AE, Carpenter WT Jr (1988) The power of analysis: statistical perspectives. Part 2. Psychiatry Res 23:301–309. doi:10.1016/0165-1781(88)90021-2

    PubMed  CAS  Google Scholar 

  10. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48:996–1001

    PubMed  CAS  Google Scholar 

  11. Bernstein HG, Krause S, Krell D, Dobrowolny H, Wolter M, Stauch R et al (2007) Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. Ann N Y Acad Sci 1096:120–127. doi:10.1196/annals.1397.077

    PubMed  CAS  Google Scholar 

  12. Bleier R (1969) Retrograde transsynaptic cellular degeneration in mammillary and ventral tegmental nuclei following limbic decortication in rabbits of various ages. Brain Res 15:365–393. doi:10.1016/0006-8993(69)90162-0

    PubMed  CAS  Google Scholar 

  13. Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445

    PubMed  CAS  Google Scholar 

  14. Broadbelt K, Byne W, Jones LB (2002) Evidence for a decrease in basilar dentrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr Res 58:75–81. doi:10.1016/S0920-9964(02)00201-3

    PubMed  Google Scholar 

  15. Bruneau EG, McCullumsmith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2005) Increased expression of glutaminase and glutamine synthetase mRNA in the thalamus in schizophrenia. Schizophr Res 75:27–34. doi:10.1016/j.schres.2004.12.012

    PubMed  Google Scholar 

  16. Buchsbaum MS, Buchsbaum BR, Chokron S, Tang C, Wei TC, Byne W (2006) Thalamocortical circuits: fMRI assessment of the pulvinar and medial dorsal nucleus in normal volunteers. Neurosci Lett 404:282–287. doi:10.1016/j.neulet.2006.05.063

    PubMed  CAS  Google Scholar 

  17. Buchsbaum MS, Buchsbaum BR, Hazlett EA, Haznedar MM, Newmark R, Tang CY et al (2007) Relative glucose metabolic rate higher in white matter in patients with schizophrenia. Am J Psychiatry 164:1072–1081. doi:10.1176/appi.ajp.164.7.1072

    PubMed  Google Scholar 

  18. Buchsbaum MS, Christian BT, Lehrer DS, Narayanan TK, Shi B, Mantil J et al (2006) D2/D3 dopamine receptor binding with [F-18]fallypride in thalamus and cortex of patients with schizophrenia. Schizophr Res 85:232–244. doi:10.1016/j.schres.2006.03.042

    PubMed  Google Scholar 

  19. Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M et al (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49:935–942

    PubMed  CAS  Google Scholar 

  20. Buchsbaum MS, Someya T, Teng CY, Abel L, Chin S, Najafi A et al (1996) PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 153:191–199

    PubMed  CAS  Google Scholar 

  21. Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitroupoulou V et al (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58:133–140. doi:10.1001/archpsyc.58.2.133

    PubMed  CAS  Google Scholar 

  22. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65. doi:10.1176/appi.ajp.159.1.59

    PubMed  Google Scholar 

  23. Byne W, Dracheva S, Chin B, Schmeidler JM, Davis KL, Haroutunian V (2008) Schizophrenia and sex associated differences in the expression of neuronal and oligodendrocyte-specific genes in individual thalamic nuclei. Schizophr Res 98:118–128. doi:10.1016/j.schres.2007.09.034

    PubMed  Google Scholar 

  24. Byne W, Fernandes J, Haroutunian V, Huacon D, Kidkardnee S, Kim J et al (2007) Reduction of right medial pulvinar volume and neuron number in schizophrenia. Schizophr Res 90:71–75. doi:10.1016/j.schres.2006.10.006

    PubMed  Google Scholar 

  25. Byne W, Kidkardnee S, Tatusov A, Yiannoulos G, Buchsbaum MS, Haroutunian V (2006) Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophr Res 85(1–3):245–253

    PubMed  Google Scholar 

  26. Camchong J, Dyckman KA, Chapman CE, Yanasak NE, McDowell JE (2006) Basal ganglia-thalamocortical circuitry disruptions in schizophrenia during delayed response tasks. Biol Psychiatry 60:235–241. doi:10.1016/j.biopsych.2005.11.014

    PubMed  Google Scholar 

  27. Carter CS, Mintun M, Nichols T, Cohen JD (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial Stroop task performance. Am J Psychiatry 154(12):1670–1675

    PubMed  CAS  Google Scholar 

  28. Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B et al (1994) Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 151:1430–1436

    PubMed  CAS  Google Scholar 

  29. Chua SE, Cheung C, Cheung V, Tsang JT, Chen EY, Wong JC et al (2007) Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res 89:12–21. doi:10.1016/j.schres.2006.09.009

    PubMed  Google Scholar 

  30. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160:1100–1109. doi:10.1176/appi.ajp.160.6.1100

    PubMed  Google Scholar 

  31. Clinton SM, Haroutunian V, Meador-Woodruff JH (2006) Up-regulation of NMDA receptor subunit and post-synaptic density protein expression in the thalamus of elderly patients with schizophrenia. J Neurochem 98:1114–1125. doi:10.1111/j.1471-4159.2006.03954.x

    PubMed  CAS  Google Scholar 

  32. Clinton SM, Ibrahim HM, Frey KA, Davis KL, Haroutunian V, Meador-Woodruff JH (2005) Dopaminergic abnormalities in select thalamic nuclei in schizophrenia: involvement of the intracellular signal integrating proteins calcyon and spinophilin. Am J Psychiatry 162:1859–1871. doi:10.1176/appi.ajp.162.10.1859

    PubMed  Google Scholar 

  33. Clinton SM, Meador-Woodruff JH (2004) Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities. Schizophr Res 69:237–253. doi:10.1016/j.schres.2003.09.017

    PubMed  Google Scholar 

  34. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12:386–394. doi:10.1093/cercor/12.4.386

    PubMed  Google Scholar 

  35. Crespo-Facorro B, Roiz-Santianez R, Pelayo-Teran JM, Rodriguez-Sanchez JM, Perez-Iglesias R, Gonzalez-Blanch C et al (2007) Reduced thalamic volume in first-episode non-affective psychosis: correlations with clinical variables, symptomatology and cognitive functioning. Neuroimage 35:1613–1623. doi:10.1016/j.neuroimage.2007.01.048

    PubMed  Google Scholar 

  36. Crosson B (1999) Subcortical mechanisms in language: lexical-semantic mechanisms and the thalamus. Brain Cogn 40:414–438. doi:10.1006/brcg.1999.1088

    PubMed  CAS  Google Scholar 

  37. Cullen TJ, Walker MA, Parkinson N, Craven R, Crow TJ, Esiri MM et al (2003) A postmortem study of the mediodorsal nucleus of the thalamus in schizophrenia. Schizophr Res 60:157–166. doi:10.1016/S0920-9964(02)00297-9

    PubMed  CAS  Google Scholar 

  38. Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G et al (1998) Schizophrenia and anteroventral thalamic nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res 82:1–10. doi:10.1016/S0925-4927(97)00071-1

    PubMed  CAS  Google Scholar 

  39. Danos P, Baumann B, Bernstein HG, Stauch R, Krell D, Falkai P, Bogerts B (2002) The ventral lateral posterior nucleus of the thalamus in schizophrenia: a post-mortem study. Psychiatry Res 114(1):1–9

    PubMed  Google Scholar 

  40. Danos P, Baumann B, Kramer A, Bernstein HG, Stauch R, Krell D et al (2003) Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 60:141–155. doi:10.1016/S0920-9964(02)00307-9

    PubMed  Google Scholar 

  41. Danos P, Schmidt A, Baumann B, Bernstein HG, Northoff G, Stauch R et al (2005) Volume and neuron number of the mediodorsal thalamic nucleus in schizophrenia: a replication study. Psychiatry Res 140:281–289. doi:10.1016/j.pscychresns.2005.09.005

    PubMed  Google Scholar 

  42. Davis KL, Buchsbaum MS, Shihabuddin L, Spiegel-Cohen J, Metzger M, Frecska E et al (1998) Ventricular enlargement in poor-outcome schizophrenia. Biol Psychiatry 43:783–793. doi:10.1016/S0006-3223(97)00553-2

    PubMed  CAS  Google Scholar 

  43. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al (2003) White matter changes in schizophrenia—evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456. doi:10.1001/archpsyc.60.5.443

    PubMed  Google Scholar 

  44. Dazzan P, Morgan KD, Orr K, Hutchinson G, Chitnis X, Suckling J et al (2005) Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacology 30:765–774

    PubMed  CAS  Google Scholar 

  45. Dewulf A (1971) Anatomy of the normal human thalamus. Elsevier, Amsterdam

    Google Scholar 

  46. Dixon G, Dissanaike S, Harper CG (2000) Parvalbumin-immunoreactive neurons in the human anteroventral thalamic nucleus. Neuroreport 11:97–101. doi:10.1097/00001756-200001170-00020

    PubMed  CAS  Google Scholar 

  47. Dixon G, Harper CG (2004) No evidence for selective GABAergic interneuron deficits in the anterior thalamic complex of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 28:1045–1051. doi:10.1016/j.pnpbp.2004.06.004

    PubMed  CAS  Google Scholar 

  48. Dom R (1976) Neostriatal and thalamic interneurons. Catholic University of Leuven, Leuven

    Google Scholar 

  49. Dorph-Petersen KA, Pierri JN, Sun ZX, Sampson AR, Lewis DA (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462. doi:10.1002/cne.20055

    PubMed  Google Scholar 

  50. Dracheva S, Byne W, Chin B, Haroutunian V (2008) Ionotropic glutamate receptors mRNA expression in the human thalamus: absence of change in schizophrenia. Brain Res 1214:23–34. doi:10.1016/j.brainres.2008.03.039

    PubMed  CAS  Google Scholar 

  51. Duffy L, O’Carroll R (1994) Memory impairment in schizophrenia—a comparison with that observed in the alcoholic Korsakoff syndrome. Psychol Med 24:155–165

    Article  PubMed  CAS  Google Scholar 

  52. Dwork AJ (1997) Postmortem studies of the hippocampal formation in schizophrenia. Schizophr Bull 23:385–402

    PubMed  CAS  Google Scholar 

  53. Egner T, Hirsch J (2005) Where memory meets attention: neural substrates of negative priming. J Cogn Neurosci 17:1774–1784. doi:10.1162/089892905774589226

    PubMed  Google Scholar 

  54. Ettinger U, Picchioni M, Landau S, Matsumoto K, van Haren NE, Marshall N et al (2007) Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia. Arch Gen Psychiatry 64:401–409. doi:10.1001/archpsyc.64.4.401

    PubMed  Google Scholar 

  55. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. Neuroimage 26:471–479. doi:10.1016/j.neuroimage.2005.02.004

    PubMed  Google Scholar 

  56. Farde L (1997) Brain imaging of schizophrenia—the dopamine hypothesis. Schizophr Res 28:157–162. doi:10.1016/S0920-9964(97)00121-7

    PubMed  CAS  Google Scholar 

  57. Frazier JA, Hodge SM, Breeze JL, Giuliano AJ, Terry JE, Moore CM et al (2008) Diagnostic and sex effects on limbic volumes in early-onset bipolar disorder and schizophrenia. Schizophr Bull 34:37–46. doi:10.1093/schbul/sbm120

    PubMed  Google Scholar 

  58. Garcia-Cabezas MA, Rico B, Sanchez-Gonzalez MA, Cavada C (2007) Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 34:965–984. doi:10.1016/j.neuroimage.2006.07.032

    PubMed  Google Scholar 

  59. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al (1998) Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 65:446–453

    PubMed  CAS  Google Scholar 

  60. Garver DL, Holcomb JA, Christensen JD (2000) Heterogeneity of response to antipsychotics from multiple disorders in the schizophrenia spectrum. J Clin Psychiatry 61:964–972

    PubMed  CAS  Google Scholar 

  61. Gelowitz DL, Rakic P, Goldman-Rakic PS, Selemon LD (2002) Craniofacial dysmorphogenesis in fetally irradiated nonhuman primates: implications for the neurodevelopmental hypothesis of schizophrenia. Biol Psychiatry 52:716–720. doi:10.1016/S0006-3223(02)01380-X

    PubMed  Google Scholar 

  62. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS (2001) Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 158:618–624. doi:10.1176/appi.ajp.158.4.618

    PubMed  CAS  Google Scholar 

  63. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Zoltick B et al (2007) Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiatry 63(5):475–483

    PubMed  Google Scholar 

  64. Goldman-Rakic PS, Porrino LJ (1985) The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol 242:535–560. doi:10.1002/cne.902420406

    PubMed  CAS  Google Scholar 

  65. Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. Trends Neurosci 23:35–39. doi:10.1016/S0166-2236(99)01482-4

    PubMed  CAS  Google Scholar 

  66. Gritti I, Mariotti M, Mancia M (1987) Limbic and brainstem afferents to thalamic mediodorsal nucleus: a horseradish peroxidase study. Neurosci Lett 76:345–350. doi:10.1016/0304-3940(87)90427-7

    PubMed  CAS  Google Scholar 

  67. Guillery RW, Harting JK (2003) Structure and connections of the thalamic reticular nucleus: advancing views over half a century. J Comp Neurol 463:360–371. doi:10.1002/cne.10738

    PubMed  CAS  Google Scholar 

  68. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE et al (2000) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57:761–768. doi:10.1001/archpsyc.57.8.761

    PubMed  CAS  Google Scholar 

  69. Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC (1998) Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 155:1711–1717

    PubMed  CAS  Google Scholar 

  70. Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC (1998) Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry 155:1711–1717

    PubMed  CAS  Google Scholar 

  71. Gur RE, Turetsky BI, Loughead J, Snyder W, Kohler C, Elliott M et al (2007) Visual attention circuitry in schizophrenia investigated with oddball event-related functional magnetic resonance imaging. Am J Psychiatry 164:442–449. doi:10.1176/appi.ajp.164.3.442

    PubMed  Google Scholar 

  72. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 98:4746–4751. doi:10.1073/pnas.081071198

    PubMed  CAS  Google Scholar 

  73. Harms MP, Wang L, Mamah D, Barch DM, Thompson PA, Csernansky JG (2007) Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. J Neurosci 27:13835–13842. doi:10.1523/JNEUROSCI.2571-07.2007

    PubMed  CAS  Google Scholar 

  74. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624. doi:10.1093/brain/122.4.593

    PubMed  Google Scholar 

  75. Haug H, Kuhl S, Mecke E, Sass NL, Wasner K (1984) The significance of morphometric procedures in the investigation of age-changes in cytoarchitectonic structures of human-brain. J Hirnforsch 25:353–374

    PubMed  CAS  Google Scholar 

  76. Hazlett EA, Buchsbaum MS, Byne W, Wei TC, Spiegel-Cohen J, Geneve C et al (1999) Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 156:1190–1199

    PubMed  CAS  Google Scholar 

  77. Hazlett EA, Buchsbaum MS, Kemether E, Bloom R, Platholi J, Brickman AM et al (2004) Abnormal glucose metabolism in the mediodorsal nucleus of the thalamus in schizophrenia. Am J Psychiatry 161:305–314. doi:10.1176/appi.ajp.161.2.305

    PubMed  Google Scholar 

  78. Hazlett EA, Buchsbaum MS, Tang CY, Fleischman MB, Wei TC, Byne W, Haznedar MM (2001) Thalamic activation during an attention-to-prepulse startle modification paradigm: a functional MRI study. Biol Psychiatry 50(4):281–291

    PubMed  CAS  Google Scholar 

  79. Heinsen H, Rub U, Bauer M, Ulmar G, Bethke B, Schuler M et al (1999) Nerve cell loss in the thalamic mediodorsal nucleus in Huntington’s disease. Acta Neuropathol 97:613–622. doi:10.1007/s004010051037

    PubMed  CAS  Google Scholar 

  80. Highley JR, Walker MA, Crow TJ, Esiri MM, Harrison PJ (2003) Low medial and lateral right pulvinar volumes in schizophrenia: a postmortem study. Am J Psychiatry 160:1177–1179. doi:10.1176/appi.ajp.160.6.1177

    PubMed  Google Scholar 

  81. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245. doi:10.1176/appi.ajp.162.12.2233

    PubMed  Google Scholar 

  82. Huerta I, McCullumsmith RE, Haroutunian V, Gimenez-Amaya JM, Meador-Woodruff JH (2006) Expression of excitatory amino acid transporter interacting protein transcripts in the thalamus in schizophrenia. Synapse 59:394–402. doi:10.1002/syn.20250

    PubMed  CAS  Google Scholar 

  83. Jakary A, Vinogradov S, Feiwell R, Deicken RF (2005) N-acetylaspartate reductions in the mediodorsal and anterior thalamus in men with schizophrenia verified by tissue volume corrected proton MRSI. Schizophr Res 76:173–185. doi:10.1016/j.schres.2005.02.012

    PubMed  Google Scholar 

  84. Jobe TH, Harrow M (2005) Long-term outcome of patients with schizophrenia: a review. Can J Psychiatry 50:892–900

    PubMed  Google Scholar 

  85. Jones DK, Catani M, Pierpaoli C, Reeves SJ, Shergill SS, O’Sullivan M et al (2005) A diffusion tensor magnetic resonance imaging study of frontal cortex connections in very-late-onset schizophrenia-like psychosis. Am J Geriatr Psychiatry 13:1092–1099. doi:10.1176/appi.ajgp.13.12.1092

    PubMed  Google Scholar 

  86. Jones EG (1985) The thalamus. Plenum Press, New York

    Google Scholar 

  87. Jones EG (1997) Cortical development and thalamic pathology in schizophrenia. Schizophr Bull 23:483–501

    PubMed  CAS  Google Scholar 

  88. Jones EG (1998) A new view of specific and nonspecific thalamocortical connections. Adv Neurol 77:49–71

    PubMed  CAS  Google Scholar 

  89. Jones EG (2002) Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B Biol Sci 357:1659–1673. doi:10.1098/rstb.2002.1168

    PubMed  Google Scholar 

  90. Jones EG, Hendry SHC (1989) Differential calcium-binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1:222–246. doi:10.1111/j.1460-9568.1989.tb00791.x

    PubMed  Google Scholar 

  91. Jones LB, Johnson N, Byne W (2002) Alterations in MAP2 immunocytochemistry in areas 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 114(3):137–148

    PubMed  CAS  Google Scholar 

  92. Katz M, Buchsbaum MS, Siegel BV Jr, Wu J, Haier RJ, Bunney WE Jr (1996) Correlational patterns of cerebral glucose metabolism in never-medicated schizophrenics. Neuropsychobiology 33(1):1–11

    PubMed  CAS  Google Scholar 

  93. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  94. Kemether EM, Buchsbaum MS, Byne W, Hazlett EA, Haznedar M, Brickman AM et al (2003) Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia. Arch Gen Psychiatry 60:983–991. doi:10.1001/archpsyc.60.9.983

    PubMed  Google Scholar 

  95. Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW (1994) Changes in caudate volume with neuroleptic treatment. Lancet 344:1434. doi:10.1016/S0140-6736(94)90599-1

    PubMed  CAS  Google Scholar 

  96. Khorram B, Lang DJ, Kopala LC, Vandorpe RA, Rui Q, Goghari VM et al (2006) Reduced thalamic volume in patients with chronic schizophrenia after switching from typical antipsychotic medications to olanzapine. Am J Psychiatry 163:2005–2007. doi:10.1176/appi.ajp.163.11.2005

    PubMed  Google Scholar 

  97. Kim JJ, Kim DJ, Kim TG, Seok JH, Chun JW, Oh MK et al (2007) Volumetric abnormalities in connectivity-based subregions of the thalamus in patients with chronic schizophrenia. Schizophr Res 97:226–235. doi:10.1016/j.schres.2007.09.007

    PubMed  Google Scholar 

  98. Kinomura S, Larsson J, Gulyas B, Roland PE (1996) Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271:512–515. doi:10.1126/science.271.5248.512

    PubMed  CAS  Google Scholar 

  99. Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH (2005) Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J Psychiatry Neurosci 30:178–186

    PubMed  Google Scholar 

  100. Konick LC, Friedman L (2001) Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 49:28–38. doi:10.1016/S0006-3223(00)00974-4

    PubMed  CAS  Google Scholar 

  101. Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N et al (2007) Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 130:678–692. doi:10.1093/brain/awl386

    PubMed  Google Scholar 

  102. Kretschmann HJ, Tafesse U, Herrmann A (1982) Different volume changes of cerebral cortex and white matter during histological preparation. Microsc Acta 86:13–24

    PubMed  CAS  Google Scholar 

  103. Kumari V, Antonova E, Geyer MA (2008) Prepulse inhibition and “psychosis-proneness” in healthy individuals: An fMRI study. Eur Psychiatry [Epub ahead of print]

  104. Kumral E (2001) Paranoid (delusional) disorder associated with tuberothalamic artery territory infarction. Cerebrovasc Dis 11:137–138. doi:10.1159/000047625

    PubMed  CAS  Google Scholar 

  105. Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F et al (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60:878–888. doi:10.1001/archpsyc.60.9.878

    PubMed  Google Scholar 

  106. LaBerge D, Buchsbaum MS (1990) Positron emission tomographic measurements of pulvinar activity during an attention task. J Neurosci 10:613–619

    PubMed  CAS  Google Scholar 

  107. Lang DJ, Khorram B, Goghari VM, Kopala LC, Vandorpe RA, Rui Q et al (2006) Reduced anterior internal capsule and thalamic volumes in first-episode psychosis. Schizophr Res 87:89–99. doi:10.1016/j.schres.2006.05.002

    PubMed  CAS  Google Scholar 

  108. Lang DJ, Kopala LC, Vandorpe RA, Rui Q, Smith GN, Goghari VM et al (2004) Reduced basal ganglia volumes after switching to olanzapine in chronically treated patients with schizophrenia. Am J Psychiatry 161:1829–1836. doi:10.1176/appi.ajp.161.10.1829

    PubMed  Google Scholar 

  109. Laurens KR, Kiehl KA, Ngan ET, Liddle PF (2005) Attention orienting dysfunction during salient novel stimulus processing in schizophrenia. Schizophr Res 75:159–171. doi:10.1016/j.schres.2004.12.010

    PubMed  Google Scholar 

  110. Letinic K, Kostovic I (1997) Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 384:373–395. doi:10.1002/(SICI)1096-9861(19970804)384:3<373::AID-CNE5>3.0.CO;2-0

    PubMed  CAS  Google Scholar 

  111. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN (2001) Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. Am J Psychiatry 158:1411–1422. doi:10.1176/appi.ajp.158.9.1411

    PubMed  CAS  Google Scholar 

  112. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS et al (2005) Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 62:361–370. doi:10.1001/archpsyc.62.4.361

    PubMed  CAS  Google Scholar 

  113. Lindenmayer JP, Harvey PD, Khan A, Kirkpatrick B (2007) Schizophrenia: measurements of psychopathology. Psychiatr Clin North Am 30:339–363. doi:10.1016/j.psc.2007.04.005

    PubMed  CAS  Google Scholar 

  114. Llinas RR, Leznik E, Urbano FJ (1999) Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA 99(1):8449–8454

    Google Scholar 

  115. Magnin M, Bastuji H, Garcia-Larrea L, Mauguiere F (2004) Human thalamic medial pulvinar nucleus is not activated during paradoxical sleep. Cereb Cortex 14:858–862. doi:10.1093/cercor/bhh044

    PubMed  Google Scholar 

  116. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298. doi:10.1016/S0920-9964(02)00294-3

    PubMed  Google Scholar 

  117. Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J (1996) Cognitive deficits in Machado-Joseph disease. Ann Neurol 40:421–427. doi:10.1002/ana.410400311

    PubMed  CAS  Google Scholar 

  118. Matsumoto N, Minamimoto T, Graybiel AM, Kimura M (2001) Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 85:960–976

    PubMed  CAS  Google Scholar 

  119. McDonald C, Bullmore E, Sham P, Chitnis X, Suckling J, MacCabe J et al (2005) Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study. Br J Psychiatry 186:369–377. doi:10.1192/bjp.186.5.369

    PubMed  Google Scholar 

  120. McIntosh AM, Job DE, Moorhead TW, Harrison LK, Forrester K, Lawrie SM et al (2004) Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry 56:544–552. doi:10.1016/j.biopsych.2004.07.020

    PubMed  Google Scholar 

  121. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21:700–712

    PubMed  CAS  Google Scholar 

  122. Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS (2005) Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann’s areas of the left hemisphere in schizophrenia. Am J Psychiatry 162:1733–1735. doi:10.1176/appi.ajp.162.9.1733

    PubMed  Google Scholar 

  123. Mitelman SA, Torosjan Y, Newmark RE, Schneiderman JS, Chu KW, Brickman AM et al (2007) Internal capsule, corpus callosum and long associative fibers in good and poor outcome schizophrenia: a diffusion tensor imaging survey. Schizophr Res 92:211–224. doi:10.1016/j.schres.2006.12.029

    PubMed  Google Scholar 

  124. Molina V, Sanz J, Sarramea F, Palomo T (2007) Marked hypofrontality in clozapine-responsive patients. Pharmacopsychiatry 40:157–162. doi:10.1055/s-2007-984399

    PubMed  CAS  Google Scholar 

  125. Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A (2005) Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Arch Gen Psychiatry 62:254–262. doi:10.1001/archpsyc.62.3.254

    PubMed  Google Scholar 

  126. Munkle MC, Waldvogel HJ, Faull RL (2000) The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 19:155–173. doi:10.1016/S0891-0618(00)00060-0

    PubMed  CAS  Google Scholar 

  127. Murray KD, Choudary PV, Jones EG (2007) Nucleus- and cell-specific gene expression in monkey thalamus. Proc Natl Acad Sci USA 104:1989–1994. doi:10.1073/pnas.0610742104

    PubMed  CAS  Google Scholar 

  128. Neckelmann G, Specht K, Lund A, Ersland L, Smievoll AI, Neckelmann D et al (2006) Mr morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. Int J Neurosci 116:9–23. doi:10.1080/00207450690962244

    PubMed  Google Scholar 

  129. Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A et al (2008) Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 98:16–28. doi:10.1016/j.schres.2007.12.169

    PubMed  Google Scholar 

  130. Noda S, Mizoguchi M, Yamamoto A (1993) Thalamic experiential hallucinosis. J Neurol Neurosurg Psychiatry 56:1224–1226

    PubMed  CAS  Google Scholar 

  131. Oepen G, Thoden U, Warmke C (1990) Association of tardive dyskinesia with increased frequency of eye movement disturbances in chronic schizophrenic patients. A clinical note. Eur Arch Psychiatry Neurol Sci 239:241–245. doi:10.1007/BF01738578

    PubMed  CAS  Google Scholar 

  132. Okugawa G, Nobuhara K, Takase K, Saito Y, Yoshimura M, Kinoshita T (2007) Olanzapine increases grey and white matter volumes in the caudate nucleus of patients with schizophrenia. Neuropsychobiology 55:43–46. doi:10.1159/000103575

    PubMed  CAS  Google Scholar 

  133. Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533. doi:10.1016/S0022-3956(99)00029-1

    PubMed  CAS  Google Scholar 

  134. Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus-accumbens in schizophrenics. Arch Gen Psychiatry 47:1023–1028

    PubMed  CAS  Google Scholar 

  135. Pakkenberg B (1992) The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 7:95–100. doi:10.1016/0920-9964(92)90038-7

    PubMed  CAS  Google Scholar 

  136. Pandya DN (1995) Anatomy of the auditory-cortex. Rev Neurol (Paris) 151:486–494

    CAS  Google Scholar 

  137. Partlow GD, Delcarpioodonovan R, Melanson D, Peters TM (1992) Bilateral thalamic glioma—review of 8 cases with personality-change and mental deterioration. AJNR Am J Neuroradiol 13:1225–1230

    PubMed  CAS  Google Scholar 

  138. Popken GJ, Bunney WE, Potkin SG, Jones EG (2000) Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci USA 97:9276–9280. doi:10.1073/pnas.150243397

    PubMed  CAS  Google Scholar 

  139. Premkumar P, Kumari V, Corr PJ, Sharma T (2006) Frontal lobe volumes in schizophrenia: effects of stage and duration of illness. J Psychiatr Res 40:627–637. doi:10.1016/j.jpsychires.2006.05.009

    PubMed  Google Scholar 

  140. Preuss UW, Zetzsche T, Jager M, Groll C, Frodl T, Bottlender R et al (2005) Thalamic volume in first-episode and chronic schizophrenic subjects: a volumetric MRI study. Schizophr Res 73:91–101. doi:10.1016/j.schres.2004.09.019

    PubMed  CAS  Google Scholar 

  141. Purohit DP, Perl DP, Haroutunian V, Powchik P, Davidson M, Davies KL (1998) Alzheimer disease and related neurodegenerative diseases in elderly patients with schizophrenia—a postmortem neuropathologic study of 100 cases. Arch Gen Psychiatry 55:205–211. doi:10.1001/archpsyc.55.3.205

    PubMed  CAS  Google Scholar 

  142. Raeva SN (2006) The role of the parafascicular complex (CM-Pf) of the human thalamus in the neuronal mechanisms of selective attention. Neurosci Behav Physiol 36:287–295. doi:10.1007/s11055-006-0015-y

    PubMed  CAS  Google Scholar 

  143. Ragland JD, Gur RC, Valdez JN, Loughead J, Elliott M, Kohler C et al (2005) Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition. Am J Psychiatry 162:1840–1848. doi:10.1176/appi.ajp.162.10.1840

    PubMed  Google Scholar 

  144. Ragland JD, Moelter ST, Bhati MT, Valdez JN, Kohler CG, Siegel SJ et al (2008) Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophr Res 99:312–323. doi:10.1016/j.schres.2007.11.017

    PubMed  CAS  Google Scholar 

  145. Ray JP, Price JL (1993) The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 337:1–31. doi:10.1002/cne.903370102

    PubMed  CAS  Google Scholar 

  146. Rieck RW, Ansari MS, Whetsell WO Jr, Deutch AY, Kessler RM (2004) Distribution of dopamine D2-like receptors in the human thalamus: autoradiographic and PET studies. Neuropsychopharmacology 29:362–372. doi:10.1038/sj.npp.1300336

    PubMed  CAS  Google Scholar 

  147. Robinson DL (1993) Functional contributions of the primate pulvinar. Prog Brain Res 95:371–380. doi:10.1016/S0079-6123(08)60382-9

    PubMed  CAS  Google Scholar 

  148. Romanski LM, Giguere M, Bates JF, GoldmanRakic PS (1997) Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey. J Comp Neurol 379:313–332. doi:10.1002/(SICI)1096-9861(19970317)379:3<313::AID-CNE1>3.0.CO;2-6

    PubMed  CAS  Google Scholar 

  149. Rose JE, Woolsey CN (1947) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis 27:210–232

    Google Scholar 

  150. Rottnek M et al. (2008) Schizophrenia in a patient with spinocerebellar ataxia 2: coincidence of two disorders or a neurodegenerative disorder presenting with psychosis? Am J Psychiatry (in press)

  151. Rub U, de Vos RA, Brunt ER, Sebesteny T, Schols L, Auburger G et al (2006) Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 16:218–227. doi:10.1111/j.1750-3639.2006.00022.x

    PubMed  Google Scholar 

  152. Rub U, Del Turco D, Del Tredici K, de Vos RA, Brunt ER, Reifenberger G et al (2003) Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain 126:2257–2272. doi:10.1093/brain/awg234

    PubMed  CAS  Google Scholar 

  153. Sadikot AF, Parent A, Francois C (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159. doi:10.1002/cne.903150203

    PubMed  CAS  Google Scholar 

  154. Sadikot AF, Parent A, Smith Y, Bolam JP (1992) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 320:228–242. doi:10.1002/cne.903200207

    PubMed  CAS  Google Scholar 

  155. Salami M, Itami C, Tsumoto T, Kimura F (2003) Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex. Proc Natl Acad Sci USA 100:6174–6179. doi:10.1073/pnas.0937380100

    PubMed  CAS  Google Scholar 

  156. Salgado-Pineda P, Baeza I, Perez-Gomez M, Vendrell P, Junque C, Bargallo N et al (2003) Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. Neuroimage 19:365–375. doi:10.1016/S1053-8119(03)00094-6

    PubMed  Google Scholar 

  157. Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25:6076–6083. doi:10.1523/JNEUROSCI.0968-05.2005

    PubMed  CAS  Google Scholar 

  158. Saunders RC, Mishkin M, Aggleton JP (2005) Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1–16. doi:10.1007/s00221-005-2361-3

    PubMed  Google Scholar 

  159. Schallert T, Jones TA, Lindner MD (1990) Multilevel transneuronal degeneration after brain damage. Behavioral events and effects of anticonvulsant gamma-aminobutyric acid-related drugs. Stroke 21:III143–III146

    PubMed  CAS  Google Scholar 

  160. Scherk H, Falkai P (2006) Effects of antipsychotics on brain structure. Curr Opin Psychiatry 19:145–150. doi:10.1097/01.yco.0000214339.06507.d8

    PubMed  Google Scholar 

  161. Schindler MK, Wang L, Selemon LD, Goldman-Rakie PS, Rakic P, Csernansky JG (2002) Abnormalities of thalamic volume and shape detected in fetally irradiated rhesus monkeys with high dimensional brain mapping. Biol Psychiatry 51:827–837. doi:10.1016/S0006-3223(01)01341-5

    PubMed  Google Scholar 

  162. Schlosser RG, Koch K, Wagner G, Nenadic I, Roebel M, Schachtzabel C et al (2008) Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychologia 46:336–347. doi:10.1016/j.neuropsychologia.2007.07.006

    PubMed  Google Scholar 

  163. Schmahmann JD (2003) Vascular syndromes of the thalamus. Stroke 34:2264–2278. doi:10.1161/01.STR.0000087786.38997.9E

    PubMed  Google Scholar 

  164. Selemon LD, Begovic A (2007) Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 151:1–10. doi:10.1016/j.psychres.2006.11.003

    PubMed  CAS  Google Scholar 

  165. Selemon LD, Rajkowska G, Goldman-Rakic PS (1998) Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: application of a three-dimensional, stereologic counting method. J Comp Neurol 392:402–412. doi:10.1002/(SICI)1096-9861(19980316)392:3<402::AID-CNE9>3.0.CO;2-5

    PubMed  CAS  Google Scholar 

  166. Selemon LD, Rajkowska G, GoldmanRakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex—a morphometric analysis of prefrontal area-9 and occipital area-17. Arch Gen Psychiatry 52:805–818

    PubMed  CAS  Google Scholar 

  167. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci 357:1695–1708. doi:10.1098/rstb.2002.1161

    PubMed  Google Scholar 

  168. Sherman SM, Guillery RW (2006) Exploring the role of the thalamus and its role in cortical function. MIT Press, Cambridge

    Google Scholar 

  169. Shimizu M, Fujiwara H, Hiraol K, Namiki C, Fukuyama H, Hayashi T et al (2008) Structural abnormalities of the adhesio interthalamica and mediodorsal nuclei of the thalamus in schizophrenia. Schizophr Res 101(1–3):331–338

    PubMed  Google Scholar 

  170. Sidibe M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382:323–347. doi:10.1002/(SICI)1096-9861(19970609)382:3<323::AID-CNE3>3.0.CO;2-5

    PubMed  CAS  Google Scholar 

  171. Sim K, Cullen T, Ongur D, Heckers S (2006) Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 113:907–928. doi:10.1007/s00702-005-0363-8

    PubMed  CAS  Google Scholar 

  172. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. Am J Psychiatry 158:1393–1399. doi:10.1176/appi.ajp.158.9.1393

    PubMed  CAS  Google Scholar 

  173. Smith RE, Haroutunian V, Davis KL, Meador-Woodruff JH (2001) Vesicular glutamate transporter transcript expression in the thalamus in schizophrenia. Neuroreport 12:2885–2887. doi:10.1097/00001756-200109170-00026

    PubMed  CAS  Google Scholar 

  174. Soyka M, Koch W, Moller HJ, Ruther T, Tatsch K (2005) Hypermetabolic pattern in frontal cortex and other brain regions in unmedicated schizophrenia patients. Results from a FDG-PET study. Eur Arch Psychiatry Clin Neurosci 255:308–312. doi:10.1007/s00406-005-0563-0

    PubMed  CAS  Google Scholar 

  175. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518. doi:10.1192/bjp.188.6.510

    PubMed  Google Scholar 

  176. Steriade M, Jones EG, McCormick DA (1997) Thalamic organization and chemical anatomy. Thalamus, vol. 1. Elsevier Science Ltd, Oxford

    Google Scholar 

  177. Strungas S, Christensen JD, Holcomb JM, Garver DL (2003) State-related thalamic changes during antipsychotic treatment in schizophrenia: preliminary observations. Psychiatry Res 124:121–124. doi:10.1016/S0925-4927(03)00092-1

    PubMed  Google Scholar 

  178. Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49–84. doi:10.1002/cne.901720104

    PubMed  CAS  Google Scholar 

  179. Talvik M, Nordstrom AL, Okubo Y, Olsson H, Borg J, Halldin C et al (2006) Dopamine D2 receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 148:165–173. doi:10.1016/j.pscychresns.2006.05.009

    PubMed  CAS  Google Scholar 

  180. Tregellas JR, Davalos DB, Rojas DC, Waldo MC, Gibson L, Wylie K et al (2007) Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophr Res 92:262–272. doi:10.1016/j.schres.2006.12.033

    PubMed  Google Scholar 

  181. Van Buren JM, Borke RC (1972) Variations and connections of the human thalamus. Springer, Berlin

    Google Scholar 

  182. van Groen T, Kadish I, Wyss JM (1999) Efferent connections of the anteromedial nucleus of the thalamus of the rat. Brain Res Brain Res Rev 30:1–26. doi:10.1016/S0165-0173(99)00006-5

    PubMed  Google Scholar 

  183. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL et al (2007) Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology 32:2057–2066. doi:10.1038/sj.npp.1301347

    PubMed  Google Scholar 

  184. Van Horn SC, Erisir A, Sherman SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416:509–520. doi:10.1002/(SICI)1096-9861(20000124)416:4<509::AID-CNE7>3.0.CO;2-H

    PubMed  Google Scholar 

  185. van VV, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77:477–482. doi:10.1016/S0031-9384(02)00930-7

    Google Scholar 

  186. Vogt BA, Pandya DN (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271–289. doi:10.1002/cne.902620208

    PubMed  CAS  Google Scholar 

  187. Vogt BA, Pandya DN, Rosene DL (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 262:256–270. doi:10.1002/cne.902620207

    PubMed  CAS  Google Scholar 

  188. Wang S, Eisenback MA, Bickford ME (2002) Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the “driver/modulator” theory of thalamic function. J Comp Neurol 454:482–494. doi:10.1002/cne.10453

    PubMed  Google Scholar 

  189. Watis L, Chen SH, Chua HC, Chong SA, Sim K (2008) Glutamatergic abnormalities of the thalamus in schizophrenia: a systematic review. J Neural Transm 115(3):493–511

    PubMed  CAS  Google Scholar 

  190. Weinberger DR (1987) Implications of normal brain-development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  191. Wester K, Irvine DRF, Hugdahl K (2001) Auditory laterality and attentional deficits after thalamic haemorrhage. J Neurol 248:676–683. doi:10.1007/s004150170113

    PubMed  CAS  Google Scholar 

  192. Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T et al (2004) Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry 161:1016–1022. doi:10.1176/appi.ajp.161.6.1016

    PubMed  Google Scholar 

  193. Young KA, Holcomb LA, Bonkale WL, Hicks PB, Yazdani U, German DC (2007) 5HTTLPR polymorphism and enlargement of the pulvinar: unlocking the backdoor to the limbic system. Biol Psychiatry 61:813–818. doi:10.1016/j.biopsych.2006.08.047

    PubMed  CAS  Google Scholar 

  194. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC (2004) Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 161:1270–1277. doi:10.1176/appi.ajp.161.7.1270

    PubMed  Google Scholar 

  195. Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953. doi:10.1016/S0006-3223(00)00826-X

    PubMed  CAS  Google Scholar 

  196. Yucel M, Pantelis C, Stuart GW, Wood SJ, Maruff P, Velakoulis D et al (2002) Anterior cingulate activation during Stroop task performance: a PET to MRI coregistration study of individual patients with schizophrenia. Am J Psychiatry 159:251–254. doi:10.1176/appi.ajp.159.2.251

    PubMed  Google Scholar 

  197. Zikopoulos B, Barbas H (2007) Circuits formultisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Rev Neurosci 18:417–438

    PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the veterans affairs VISN3 MIRECC, VA merit award (WB), MH66998 (WB), MH073911 (EAH), MH60023 (MSB) and a grant from the Charles A. Dana Foundation (MSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Byne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byne, W., Hazlett, E.A., Buchsbaum, M.S. et al. The thalamus and schizophrenia: current status of research. Acta Neuropathol 117, 347–368 (2009). https://doi.org/10.1007/s00401-008-0404-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0404-0

Keywords

Navigation