Skip to main content
Log in

CMT2B-associated Rab7 mutants inhibit neurite outgrowth

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Charco–Marie–Tooth type 2B (CMT2B) neuropathy is a rare autosomal-dominant axonal disorder characterized by distal weakness, muscle atrophy, and prominent sensory loss often complicated by foot ulcerations. CMT2B is associated with mutations of the Rab7 protein, a small GTPase controlling late endocytic traffic. Currently, it is still unknown how these mutations cause the neuropathy. Indeed, CMT2B selectively affects neuronal processes, despite the ubiquitous expression of Rab7. Therefore, this study focused on whether these disorder-associated mutations exert an effect on neurite outgrowth. We observed a marked inhibition of neurite outgrowth upon expression of all the CMT2B-associated mutants in the PC12 and Neuro2A cell lines. Thus, our data strongly support previous genetic data which proposed that these Rab7 mutations are indeed causally related to CMT2B. Inhibition of neurite outgrowth by these CMT2B-associated Rab7 mutants was confirmed biochemically by impaired up-regulation of growth-associated protein 43 (GAP43) in PC12 cells and of the nuclear neuronal differentiation marker NeuN in Neuro2A cells. Expression of a constitutively active Rab7 mutant had a similar effect to the expression of the CMT2B-associated Rab7 mutants. The active behavior of these CMT2B-associated mutants is in line with their previously demonstrated increased GTP loading, thus confirming that active Rab7 mutants are responsible for CMT2B. Our findings provide an explanation for the ability of CMT2B-associated Rab7 mutants to override the activity of wild-type Rab7 in heterozygous patients. Thus, our data suggest that lowering the activity of Rab7 in neurons could be a targeted therapy for CMT2B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barisic N, Claeys KG, Sirotkovi-Skerlev M et al (2008) Charcot–Marie–Tooth disease: a clinico-genetic confrontation. Ann Hum Genet 72:416–441

    Article  PubMed  CAS  Google Scholar 

  2. Bhuin T, Roy JK (2009) Rab11 is required for embryonic nervous system development in Drosophila. Cell Tissue Res 335:349–356

    Article  PubMed  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  4. Bronfman FC, Escudero CA, Weis J, Kruttgen A (2007) Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol 67:1183–1203

    Article  PubMed  CAS  Google Scholar 

  5. Bucci C, Chiariello M (2006) Signal transduction gRABs attention. Cell Signal 18:1–8

    Article  PubMed  CAS  Google Scholar 

  6. Bucci C, Parton RG, Mather IH et al (1992) The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70:715–728

    Article  PubMed  CAS  Google Scholar 

  7. Bucci C, Thomsen P, Nicoziani P, McCarthy J, van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480

    PubMed  CAS  Google Scholar 

  8. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682

    Article  PubMed  CAS  Google Scholar 

  9. Campenot RB (1981) Regeneration of neurites on long-term cultures of sympathetic neurons deprived of nerve growth factor. Science 214:579–581

    Article  PubMed  CAS  Google Scholar 

  10. Chevallier J, Koop C, Srivastava A, Petrie RJ, Lamarche-Vane N, Presley JF (2009) Rab35 regulates neurite outgrowth and cell shape. FEBS Lett 583:1096–1101

    Article  PubMed  CAS  Google Scholar 

  11. Chiariello M, De Gregorio L, Vitelli R et al (1998) Genetic mapping of the mouse Rab7 gene and pseudogene and of the human RAB7 homolog. Mamm Genome 9:448–452

    Article  PubMed  CAS  Google Scholar 

  12. Colucci AMR, Campana MC, Bellopede M, Bucci C (2005) The Rab-interacting lysosomal protein, a Rab7 and Rab34 effector, is capable of self-interaction. Biochem Biophys Res Commun 334:128–133

    Article  PubMed  CAS  Google Scholar 

  13. De Luca A, Progida C, Spinosa MR, Alifano P, Bucci C (2008) Characterization of the Rab7K157N mutant protein associated with Charcot-Marie-Tooth type 2B. Biochem Biophys Res Commun 372:283–287

    Article  PubMed  CAS  Google Scholar 

  14. De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    Article  PubMed  CAS  Google Scholar 

  15. Deinhardt K, Salinas S, Verastegui C et al (2006) Rab5 and Rab7 control endocytic sorting along the axonal retrograde transport pathway. Neuron 52:293–305

    Article  PubMed  CAS  Google Scholar 

  16. Evangelopoulos ME, Weis J, Krüttgen A (2005) Signalling pathways leading to neuroblastoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene 24:3309–3318

    Article  PubMed  CAS  Google Scholar 

  17. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827

    Article  PubMed  CAS  Google Scholar 

  18. Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62

    Article  PubMed  CAS  Google Scholar 

  19. Harrison R, Bucci C, Vieira O, Schroer T, Grinstein S (2003) Phagosomes fuse with late endosomes and/or lysosomes by extension of membrane protrusions along microtubules: role of Rab7 and RILP. Mol Cell Biol 23:6494–6506

    Article  PubMed  CAS  Google Scholar 

  20. Hilliard MA (2009) Axonal degeneration and regeneration: a mechanistic tug-of-war. J Neurochem 108:23–32

    Article  PubMed  CAS  Google Scholar 

  21. Houlden H, Blake J, Reilly MM (2004) Hereditary sensory neuropathies. Curr Opin Neurol 17:569–577

    Article  PubMed  CAS  Google Scholar 

  22. Houlden H, King RH, Muddle JR et al (2004) A novel RAB7 mutation associated with ulcero-mutilating neuropathy. Ann Neurol 56:586–590

    Article  PubMed  CAS  Google Scholar 

  23. Jager S, Bucci C, Tanida I et al (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117:4837–4848

    Article  PubMed  CAS  Google Scholar 

  24. Köhler K, Zahraoui A (2005) Tight junction: a co-ordinator of cell signalling and membrane trafficking. Biol Cell 97:659–665

    Article  PubMed  Google Scholar 

  25. Kruttgen A, Saxena S, Evangelopoulos ME, Weis J (2003) Neurotrophins and neurodegenerative diseases: receptors stuck in traffic? J Neuropathol Exp Neurol 62:340–350

    PubMed  CAS  Google Scholar 

  26. Landt O, Grunert H-P, Hahn U (1990) A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128

    Article  PubMed  CAS  Google Scholar 

  27. Martin MG, Perga S, Trovò L et al (2008) Cholesterol loss enhances TrkB signaling in hippocampal neurons aging in vitro. Mol Biol Cell 19:2101–2112

    Article  PubMed  CAS  Google Scholar 

  28. Mauch DH, Nägler K, Schumacher S et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science 9:1354–1357

    Article  Google Scholar 

  29. McCray BA, Skordalakes E, Taylor JP (2010) Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation. Hum Mol Genet 19:1033–1047

    Article  PubMed  CAS  Google Scholar 

  30. Meggouh F, Bienfait HM, Weterman MA, de Visser M, Baas F (2006) Charcot–Marie–Tooth disease due to a de novo mutation of the RAB7 gene. Neurology 67:1476–1478

    Article  PubMed  CAS  Google Scholar 

  31. Moises T, Dreier A, Flohr S et al (2007) Tracking TrkA’s trafficking: NGF receptor trafficking controls NGF receptor signaling. Mol Neurobiol 35:151–159

    Article  PubMed  CAS  Google Scholar 

  32. Ng EL, Tang BL (2008) Rab GTPases and their roles in brain neurons and glia. Brain Res Rev 58:236–246

    Article  PubMed  CAS  Google Scholar 

  33. Nishimura N, Sasaki T (2009) Rab family small G proteins in regulation of epithelial apical junctions. Front Biosci 14:2115–2129

    Article  PubMed  CAS  Google Scholar 

  34. Olkkonen VM, Ikonen E (2006) When intracellular logistics fails–genetic defects in membrane trafficking. J Cell Sci 119:5031–5045

    Article  PubMed  CAS  Google Scholar 

  35. Pareyson D, Scaioli V, Laurà M (2006) Clinical and electrophysiological aspects of Charcot–Marie–Tooth disease. Neuromol Med 8:3–22

    Article  CAS  Google Scholar 

  36. Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M (2004) From snails to sciatic nerve: retrograde injury signaling from axon to soma in lesioned neurons. J Neurobiol 58:287–294

    Article  PubMed  Google Scholar 

  37. Press B, Feng Y, Hoflack B, Wandinger-Ness A (1998) Mutant Rab7 causes the accumulation of cathepsin D and cation-independent mannose 6-phosphate receptor in an early endocytic compartment. J Cell Biol 140:1075–1089

    Article  PubMed  CAS  Google Scholar 

  38. Progida C, Spinosa M, De Luca A, Bucci C (2006) RILP interacts with the VPS22 component of the ESCRT-II complex. Biochem Biophys Res Commun 347:1074–1079

    Article  PubMed  CAS  Google Scholar 

  39. Sands MS, Davidson BL (2006) Gene therapy for lysosomal storage diseases. Mol Ther 13:839–849

    Article  PubMed  CAS  Google Scholar 

  40. Sann S, Wang Z, Brown H, Jin Y (2009) Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 19:317–324

    Article  PubMed  CAS  Google Scholar 

  41. Saxena S, Bucci C, Weis J, Kruttgen A (2005) The small GTPase Rab7 controls the endosomal trafficking and neuritogenic signaling of the nerve growth factor receptor TrkA. J Neurosci 25:10930–10940

    Article  PubMed  CAS  Google Scholar 

  42. Saxena SK, Kaur S (2006) Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351:582–587

    Article  PubMed  CAS  Google Scholar 

  43. Seebohm G, Strutz-Seebohm N, Birkin R et al (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    Article  PubMed  CAS  Google Scholar 

  44. Seebohm G, Strutz-Seebohm N, Ureche ON et al (2008) Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels. Circ Res 103:1451–1457

    Article  PubMed  Google Scholar 

  45. Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA (1986) A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science 233:783–786

    Article  PubMed  CAS  Google Scholar 

  46. Snider MD (2003) A role for rab7 GTPase in growth factor-regulated cell nutrition and apoptosis. Mol Cell 12:796–797

    Article  PubMed  CAS  Google Scholar 

  47. Spinosa MR, Progida C, De Luca A, Colucci AMR, Alifano P, Bucci C (2008) Functional characterization of Rab7 mutant proteins associated with Charcot–Marie–Tooth type 2B disease. J Neurosci 28:1640–1648

    Article  PubMed  CAS  Google Scholar 

  48. Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–525

    Article  PubMed  CAS  Google Scholar 

  49. Twiss JL, Shooter EM (1995) Nerve growth factor promotes neurite regeneration in PC12 cells by translational control. J Neurochem 64:550–557

    Article  PubMed  CAS  Google Scholar 

  50. Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486:84–96

    PubMed  CAS  Google Scholar 

  51. Verhoeven K, De Jonghe P, Coen K et al (2003) Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot–Marie–Tooth type 2B neuropathy. Am J Hum Genet 72:722–727

    Article  PubMed  CAS  Google Scholar 

  52. Vitelli R, Santillo M, Lattero D et al (1997) Role of the small GTPase Rab7 in the late endocytic pathway. J Biol Chem 272:4391–4397

    Article  PubMed  CAS  Google Scholar 

  53. Wu Z, Ghosh-Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA 104:15132–15137

    Article  PubMed  CAS  Google Scholar 

  54. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  PubMed  CAS  Google Scholar 

  55. Zuchner S, Vance JM (2006) Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat Clin Pract Neurol 2:45–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Giampietro Schiavo for helpful suggestions and Ornella Rossetto for cells and protocols. The financial support of Telethon-Italy (Grant GGP09045 to C.B.), Associazione Italiana per la Ricerca sul Cancro (AIRC Grant 4496 to C.B.) and the Fritz Thyssen Stiftung (to A.K.) is gratefully acknowledged. C.B. and A.K. equally contributed to the work. The authors have no conflicting financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Bucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cogli, L., Progida, C., Lecci, R. et al. CMT2B-associated Rab7 mutants inhibit neurite outgrowth. Acta Neuropathol 120, 491–501 (2010). https://doi.org/10.1007/s00401-010-0696-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0696-8

Keywords

Navigation