Skip to main content

Advertisement

Log in

Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Pericyte apoptosis is a predominant feature of early diabetic retinopathy. In diabetic retinopathy, activated microglia migrate and release proinflammatory cytokines that contribute to disruption of the blood–retinal barrier, neuronal loss, and enhanced ROS production. Reactive oxygen species (ROS) are implicated in pericyte death; however, the mechanism by which activated microglia affect retinal microvascular pericytes is unclear. We hypothesized that activated microglia may promote pericyte apoptosis by enhancing ROS production.

Methods

Lipopolysaccharide (LPS)-activated microglia and pericytes were co-cultured in a cell culture system. Pericyte ROS production and the mitochondrial membrane potential (ΔΨm) were determined by flow cytometry. The pericyte protein expression levels of NADPH oxidase subunits, uncoupling protein 2, nuclear NF-κB-p65, and caspase-3 were determined by western blotting. One-way ANOVAs were used for statistical analysis.

Results

LPS successfully activated the microglia, as demonstrated by their morphological and phenotype changes and the significant increase in tumor necrosis factor secretion (P < 0.01). Co-culture with activated microglia significantly up-regulated NADPH oxidase subunits (NOX4, NOX2, and NCF1; P < 0.01) and down-regulated uncoupling protein 2 expression (P < 0.01) in pericytes. Pericyte ROS production increased by 20% in the activated microglia co-cultured group, and was inhibited by pretreatment with diphenyleneiodonium, coenzyme Q10, and N-acetylcysteine. The proapoptotic pericyte changes induced by co-culture with activated microglia included a 9.50% decrease in pericyte ΔΨm and significant increases in NF-κB-p65 nuclear translocation (P < 0.01) and activated caspase-3 (P < 0.01). These proapoptotic effects of activated microglia were inhibited by diphenyleneiodonium.

Conclusions

Our results are consistent with our hypothesis that activated microglia may promote pericyte apoptosis by enhancing ROS production. Further studies are needed to examine retinal microglia activation and the corresponding changes in pericytes in a rat model of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crawford TN, Alfaro DV III, Kerrison JB, Jablon EP (2009) Diabetic retinopathy and angiogenesis. Curr Diabetes Rev 5:8–13

    Article  CAS  PubMed  Google Scholar 

  2. Sims DE (1986) The pericyte—a review. Tissue Cell 18:153–174

    Article  CAS  PubMed  Google Scholar 

  3. Motiejunaite R, Kazlauskas A (2008) Pericytes and ocular diseases. Exp Eye Res 86:171–177

    Article  CAS  PubMed  Google Scholar 

  4. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA (1989) An activated form of transforming growth factor β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci U S A 86:4544–4548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Willard AL, Herman IM (2012) Vascular complications and diabetes: current therapies and future challenges. J Ophthalmol :209538

  6. Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    Article  CAS  PubMed  Google Scholar 

  7. Hirschi KK, D’Amore PA (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS 79:419–428

    CAS  PubMed  Google Scholar 

  8. Pfister F, Feng Y, vom Hagen F, Hoffmann S, Molema G, Hillebrands JL, Shani M, Deutsch U, Hammes HP (2008) Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57:2495–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li W, Yanoff M, Liu X, Ye X (1997) Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J (Engl) 110:659–663

    CAS  Google Scholar 

  10. Liu B, Bhat M, Padival AK, Smith DG, Nagaraj RH (2004) Effect of dicarbonyl modification of fibronectin on retinal capillary pericytes. Invest Ophthalmol Vis Sci 45:1983–1995

    Article  PubMed  Google Scholar 

  11. Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M (2002) Advanced glycation end-products induce apoptosis of bovine retinal pericytes in culture: involvement of diacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med 33:236–247

    Article  CAS  PubMed  Google Scholar 

  12. Pomero F, Allione A, Beltramo E, Buttiglieri S, D’Alù F, Ponte E, Lacaria A, Porta M (2003) Effects of protein kinase C inhibition and activation on proliferation and apoptosis of bovine retinal pericytes. Diabetologia 46:416–419

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Kim KM, Kim CS, Sohn E, Lee YM, Jo K, Kim JS (2012) Puerarin inhibits the retinal pericyte apoptosis induced by advanced glycation end products in vitro and in vivo by inhibiting NADPH oxidase-related oxidative stress. Free Radic Biol Med 53:357–365

    Article  CAS  PubMed  Google Scholar 

  14. Rees MD, Kennett EC, Whitelock JM, Davies MJ (2008) Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 44:1973–2001

    Article  CAS  PubMed  Google Scholar 

  15. Forbes JM, Coughlan MT, Cooper ME (2008) Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454

    Article  CAS  PubMed  Google Scholar 

  16. Grigsby JG, Cardona SM, Pouw CE, Muniz A, Mendiola AS, Tsin AT, Allen DM, Cardona AE (2014) The role of microglia in diabetic retinopathy. J Ophthalmol 2014:705783

    Article  PubMed  PubMed Central  Google Scholar 

  17. Adamis AP, Berman AJ (2008) Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol 30:65–84

    Article  CAS  PubMed  Google Scholar 

  18. Rungger-Brandle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41:1971–1980

    CAS  PubMed  Google Scholar 

  19. Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17:463–471

    Article  CAS  PubMed  Google Scholar 

  20. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54:1559–1565

    Article  CAS  PubMed  Google Scholar 

  21. Zeng HY, Green WR, Tso MO (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126:227–232

    Article  PubMed  Google Scholar 

  22. Capetandes A, Gerritsen ME (1990) Simplified methods for consistent and selective culture of bovine retinal endothelial cells and pericytes. Invest Ophthalmol Vis Sci 31:1738–1744

    CAS  PubMed  Google Scholar 

  23. Dijkstra CD, Döpp EA, Joling P, Kraal G (1985) The heterogeneity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54:589–599

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Magnus T, Chan A, Linker RA, Toyka KV, Gold R (2002) Astrocytes are less efficient in the removal of apoptotic lymphocytes than microglia cells: implications for the role of glial cells in the inflamed central nervous system. J Neuropathol Exp Neurol 61:760–766

    Article  PubMed  Google Scholar 

  25. Wang AL, Yu AC, He QH, Zhu X, Tso MO (2007) AGEs mediated expression and secretion of TNF alpha in rat retinal microglia. Exp Eye Res 84:905–913

    Article  CAS  PubMed  Google Scholar 

  26. Zeng HY, Tso MO, Lai S, Lai H (2008) Activation of nuclear factor-κB during retinal degeneration in rd mice. Mol Vis 14:1075–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rahman N, Dhadi SR, Deshpande A, Ramakrishna W (2016) Rice callus suspension culture inhibits growth of cell lines of multiple cancer types and induces apoptosis in lung cancer cell line. BMC Complement Altern Med 16:427

    Article  PubMed  PubMed Central  Google Scholar 

  28. Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker MA, Krutskikh A, Curry BJ, McLaughlin EA, Aitken RJ (2004) Identification lucigenin and tetrazolium salt reduction in rat epididymal sperm preparations. Biol Reprod 71:307–318

    Article  CAS  PubMed  Google Scholar 

  30. Rosen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  CAS  PubMed  Google Scholar 

  31. Lum H, Malik AB (1994) Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–L241

    CAS  PubMed  Google Scholar 

  32. Roberge S, Roussel J, Andersson DC, Meli AC, Vidal B, Blandel F, Lanner JT, Le Guennec JY, Katz A, Westerblad H, Lacampagne A, Fauconnier J (2014) TNF-alpha-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 103:90–99

    Article  CAS  PubMed  Google Scholar 

  33. Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K, Sakamoto Y, Kotooka N, Hirase T, Node K (2012) The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 221:375–382

    Article  CAS  PubMed  Google Scholar 

  34. Rochfort KD, Collins LE, McLoughlin A, Cummins PM (2015) TNF-alpha-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory IL-6. J Neurochem 136:564–572

    Article  PubMed  Google Scholar 

  35. Rousset F, Hazane-Puch F, Pinosa C, Nguyen MV, Grange L, Soldini A, Rubens-Duval B, Dupuy C, Morel F, Lardy B (2015) IL-1beta mediates MMP secretion and IL-1beta neosynthesis via upregulation of p22(phox) and NOX4 activity in human articular chondrocytes. Osteoarthr Cartil 23:1972–1980

    Article  CAS  PubMed  Google Scholar 

  36. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  PubMed  Google Scholar 

  37. Wu H, Jiang C, Gan D, Liao Y, Ren H, Sun Z, Zhang M, Xu G (2011) Different effects of low- and high-dose insulin on ROS production and VEGF expression in bovine retinal microvascular endothelial cells in the presence of high glucose. Graefes Arch Clin Exp Ophthalmol 249:1303–1310

    Article  CAS  PubMed  Google Scholar 

  38. Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M (2005) NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36:1040–1046

    Article  CAS  PubMed  Google Scholar 

  39. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, Wakisaka M, Ibayashi S, Utsumi H, Iida M (2004) Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation 109:227–233

    Article  CAS  PubMed  Google Scholar 

  40. Kuroda J, Nakagawa K, Yamasaki T, Nakamura K, Takeya R, Kuribayashi F, Imajoh-Ohmi S, Igarashi K, Shibata Y, Sueishi K, Sumimoto H (2005) The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells. Genes Cells 10:1139–1151

    Article  CAS  PubMed  Google Scholar 

  41. Kuroda J, Ago T, Nishimura A, Nakamura K, Matsuo R, Wakisaka Y, Kamouchi M, Kitazono T (2014) Nox4 is a major source of superoxide production in human brain pericytes. J Vasc Res 51:429–438

    Article  CAS  PubMed  Google Scholar 

  42. Su WP, Lo YC, Yan JJ, Liao IC, Tsai PJ, Wang HC, Yeh HH, Lin CC, Chen HH, Lai WW, Su WC (2012) Mitochondrial uncoupling protein 2 regulates the effects of paclitaxel on Stat3 activation and cellular survival in lung cancer cells. Carcinogenesis 33:2065–2075

    Article  CAS  PubMed  Google Scholar 

  43. Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A (2001) Activation of NF-κB is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A 98:6668–6673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, Ueno H, Tada M, Hori M (2002) Involvement of reactive oxygen species-mediated NF-κB activation in TNF-α-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240

    Article  CAS  PubMed  Google Scholar 

  45. Romeo G, Liu WH, Asnaghi V, Kern TS, Lorenzi M (2002) Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51:2241–2248

    Article  CAS  PubMed  Google Scholar 

  46. Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFκB-p65 and histone 3. J Nutr Biochem. doi:10.1016/j.jnutbio.2015.06.006

    PubMed  Google Scholar 

  47. Huang H, Gandhi JK, Zhong X, Wei Y, Gong J, Duh EJ, Vinores SA (2011) TNF alpha is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis. Invest Ophthalmol Vis Sci 52:1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Haixiang Wu conceived and designed the experiments; Xinyi Ding performed the experiments with the assistance of Meng Zhang and Ruiping Gu. Xinyi Ding analyzed the data and prepared the manuscript. Haixiang Wu is the guarantor of this study and, as such, had full access to all the data used, and takes responsibility for the integrity of the data and the accuracy of the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixiang Wu.

Ethics declarations

Funding

This work was supported by funding from the National Natural Science Foundation for Young Scholars of China (nos. 81300781 and 81400410). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Zhang, M., Gu, R. et al. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefes Arch Clin Exp Ophthalmol 255, 777–788 (2017). https://doi.org/10.1007/s00417-016-3578-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3578-5

Keywords

Navigation