Skip to main content

Advertisement

Log in

Glutamate receptors, neurotoxicity and neurodegeneration

Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Glutamate excitotoxicity is a hypothesis that states excessive glutamate causes neuronal dysfunction and degeneration. As glutamate is a major excitatory neurotransmitter in the central nervous system (CNS), the implications of glutamate excitotoxicity are many and far-reaching. Acute CNS insults such as ischaemia and traumatic brain injury have traditionally been the focus of excitotoxicity research. However, glutamate excitotoxicity has also been linked to chronic neurodegenerative disorders such as amyotrophic lateral sclerosis, multiple sclerosis, Parkinson’s disease and others. Despite the continued research into the mechanisms of excitotoxicity, there are currently no pharmacological interventions capable of providing significant neuroprotection in the clinical setting of brain ischaemia or injury. This review addresses the current state of excitotoxic research, focusing on the structure and physiology of glutamate receptors; molecular mechanisms underlying excitotoxic cell death pathways and their interactions with each other; the evidence for glutamate excitotoxicity in acute neurologic diseases; laboratory and clinical attempts at modulating excitotoxicity; and emerging targets for excitotoxicity research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarts M, Iihara K, Wei WL et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    PubMed  CAS  Google Scholar 

  2. Aarts M, Liu Y, Liu L et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298:846–850

    PubMed  CAS  Google Scholar 

  3. Abe T, Sugihara H, Nawa H et al (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem 267:13361–13368

    PubMed  CAS  Google Scholar 

  4. Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888

    PubMed  CAS  Google Scholar 

  5. Albers GW, Atkinson RP, Kelley RE et al (1995) Safety, tolerability, and pharmacokinetics of the N-methyl-d-aspartate antagonist dextrorphan in patients with acute stroke. Dextrorphan Study Group. Stroke 26:254–258

    PubMed  CAS  Google Scholar 

  6. Albers GW, Clark WM, Atkinson RP et al (1999) Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 30:508–513

    PubMed  CAS  Google Scholar 

  7. Albers GW, Goldstein LB, Hall D et al (2001) Aptiganel hydrochloride in acute ischemic stroke: a randomized controlled trial. JAMA 286:2673–2682

    PubMed  CAS  Google Scholar 

  8. Alvarez B, Ferrer-Sueta G, Freeman BA et al (1999) Kinetics of peroxynitrite reaction with amino acids and human serum albumin. J Biol Chem 274:842–848

    PubMed  CAS  Google Scholar 

  9. Aramori I, Nakanishi S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR1, in transfected CHO cells. Neuron 8:757–765

    PubMed  CAS  Google Scholar 

  10. SA Areosa, F Sherriff, R McShane, (2005) Memantine for dementia. Cochrane Database Syst Rev CD003154

  11. Baker AJ, Moulton RJ, MacMillan VH et al (1993) Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. J Neurosurg 79:369–372

    PubMed  CAS  Google Scholar 

  12. Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    PubMed  CAS  Google Scholar 

  13. PM Bath, R Iddenden, FJ Bath et al. (2001) Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev CD002087

  14. Beckman JS, Ischiropoulos H, Zhu L et al (1992) Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Arch Biochem Biophys 298:438–445

    PubMed  CAS  Google Scholar 

  15. Benveniste M, Mayer ML (1993) Multiple effects of spermine on N-methyl-d-aspartic acid receptor responses of rat cultured hippocampal neurones. J Physiol 464:131–163

    PubMed  CAS  Google Scholar 

  16. Besancon E, Guo S, Lok J et al (2008) Beyond NMDA and AMPA glutamate receptors: emerging mechanisms for ionic imbalance and cell death in stroke. Trends Pharmacol Sci 29:268–275

    PubMed  CAS  Google Scholar 

  17. Bizat N, Hermel JM, Humbert S et al (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253

    PubMed  CAS  Google Scholar 

  18. Block F, Schwarz M (1996) Memantine reduces functional and morphological consequences induced by global ischemia in rats. Neurosci Lett 208:41–44

    PubMed  CAS  Google Scholar 

  19. Boast CA, Gerhardt SC, Pastor G et al (1988) The N-methyl-d-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Res 442:345–348

    PubMed  CAS  Google Scholar 

  20. Bonfoco E, Krainc D, Ankarcrona M et al (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    PubMed  CAS  Google Scholar 

  21. Bossy-Wetzel E, Talantova MV, Lee WD et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365

    PubMed  CAS  Google Scholar 

  22. Bradley SR, Levey AI, Hersch SM et al (1996) Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J Neurosci 16:2044–2056

    PubMed  CAS  Google Scholar 

  23. Brorson JR, Marcuccilli CJ, Miller RJ (1995) Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke 26:1259–1266

    PubMed  CAS  Google Scholar 

  24. Brown AM, Kristal BS, Effron MS et al (2000) Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. J Biol Chem 275:13441–13447

    PubMed  CAS  Google Scholar 

  25. Bruno V, Battaglia G, Copani A et al (1995) Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. Eur J NeuroSci 7:1906–1913

    PubMed  CAS  Google Scholar 

  26. Bruno V, Copani A, Knopfel T et al (1995) Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology 34:1089–1098

    PubMed  CAS  Google Scholar 

  27. Buchan A, Pulsinelli WA (1990) Hypothermia but not the N-methyl-d-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 10:311–316

    PubMed  CAS  Google Scholar 

  28. Buchan AM, Xue D, Huang ZG et al (1991) Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. NeuroReport 2:473–476

    PubMed  CAS  Google Scholar 

  29. Buller AL, Larson HC, Schneider BE et al (1994) The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition. J Neurosci 14:5471–5484

    PubMed  CAS  Google Scholar 

  30. Burnashev N, Zhou Z, Neher E et al (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol 485(Pt 2):403–418

    PubMed  CAS  Google Scholar 

  31. Cao G, Xing J, Xiao X et al (2007) Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 27:9278–9293

    PubMed  CAS  Google Scholar 

  32. Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182–186

    PubMed  CAS  Google Scholar 

  33. Chatterton JE, Awobuluyi M, Premkumar LS et al (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    PubMed  CAS  Google Scholar 

  34. Chavis P, Shinozaki H, Bockaert J et al (1994) The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. J Neurosci 14:7067–7076

    PubMed  CAS  Google Scholar 

  35. Chinopoulos C, Gerencser AA, Doczi J et al (2004) Inhibition of glutamate-induced delayed calcium deregulation by 2-APB and La3+ in cultured cortical neurones. J Neurochem 91:471–483

    PubMed  CAS  Google Scholar 

  36. Chittajallu R, Vignes M, Dev KK et al (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379:78–81

    PubMed  CAS  Google Scholar 

  37. Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297

    PubMed  CAS  Google Scholar 

  38. Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    PubMed  CAS  Google Scholar 

  39. Choi DW, Yokoyama M, Koh J (1988) Zinc neurotoxicity in cortical cell culture. Neuroscience 24:67–79

    PubMed  CAS  Google Scholar 

  40. Clausen F, Marklund N, Lewen A et al (2008) The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma 25:1449–1457

    PubMed  Google Scholar 

  41. Clough-Helfman C, Phillis JW (1991) The free radical trapping agent N-tert.-butyl-alpha-phenylnitrone (PBN) attenuates cerebral ischaemic injury in gerbils. Free Radic Res Commun 15:177–186

    PubMed  CAS  Google Scholar 

  42. Crumrine RC, Bergstrand K, Cooper AT et al (1997) Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke 28:2230–2236

    PubMed  CAS  Google Scholar 

  43. Czyz A, Baranauskas G, Kiedrowski L (2002) Instrumental role of Na+ in NMDA excitotoxicity in glucose-deprived and depolarized cerebellar granule cells. J Neurochem 81:379–389

    PubMed  CAS  Google Scholar 

  44. Davis SM, Lees KR, Albers GW et al (2000) Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDA antagonist. Stroke 31:347–354

    PubMed  CAS  Google Scholar 

  45. Dawson DA, Graham DI, McCulloch J et al (1994) Anti-ischaemic efficacy of a nitric oxide synthase inhibitor and a N-methyl-d-aspartate receptor antagonist in models of transient and permanent focal cerebral ischaemia. Br J Pharmacol 113:247–253

    PubMed  CAS  Google Scholar 

  46. Dawson DA, Kusumoto K, Graham DI et al (1992) Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral ischaemia. Neurosci Lett 142:151–154

    PubMed  CAS  Google Scholar 

  47. Dawson DA, Masayasu H, Graham DI et al (1995) The neuroprotective efficacy of ebselen (a glutathione peroxidase mimic) on brain damage induced by transient focal cerebral ischaemia in the rat. Neurosci Lett 185:65–69

    PubMed  CAS  Google Scholar 

  48. Dawson VL, Dawson TM, London ED et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    PubMed  CAS  Google Scholar 

  49. Dawson VL, Kizushi VM, Huang PL et al (1996) Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci 16:2479–2487

    PubMed  CAS  Google Scholar 

  50. de Pina-Benabou MH, Szostak V, Kyrozis A et al (2005) Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36:2232–2237

    PubMed  Google Scholar 

  51. Dineley KE, Devinney MJ, Zeak JA et al (2008) Glutamate mobilizes [Zn2+] through Ca2+-dependent reactive oxygen species accumulation. J Neurochem 106:2184–2193

    PubMed  CAS  Google Scholar 

  52. Du S, McLaughlin B, Pal S et al (2002) In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. J Neurosci 22:7408–7416

    PubMed  CAS  Google Scholar 

  53. Du Y, Bales KR, Dodel RC et al (1997) Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci USA 94:11657–11662

    PubMed  CAS  Google Scholar 

  54. Dugan LL, Sensi SL, Canzoniero LM et al (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15:6377–6388

    PubMed  CAS  Google Scholar 

  55. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2+ and Na+: implications for neurodegeneration. J Neurochem 63:584–591

    PubMed  CAS  Google Scholar 

  56. Dykens JA, Stern A, Trenkner E (1987) Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury. J Neurochem 49:1222–1228

    PubMed  CAS  Google Scholar 

  57. Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    PubMed  CAS  Google Scholar 

  58. Endres M, Namura S, Shimizu-Sasamata M et al (1998) Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 18:238–247

    PubMed  CAS  Google Scholar 

  59. Escott KJ, Beech JS, Haga KK et al (1998) Cerebroprotective effect of the nitric oxide synthase inhibitors, 1-(2-trifluoromethylphenyl) imidazole and 7-nitro indazole, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:281–287

    PubMed  CAS  Google Scholar 

  60. Faddis BT, Hasbani MJ, Goldberg MP (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J Neurosci 17:951–959

    PubMed  CAS  Google Scholar 

  61. Faden AI, Demediuk P, Panter SS et al (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800

    PubMed  CAS  Google Scholar 

  62. Farahani R, Pina-Benabou MH, Kyrozis A et al (2005) Alterations in metabolism and gap junction expression may determine the role of astrocytes as “Good Samaritans” or executioners. Glia 50:351–361

    PubMed  Google Scholar 

  63. Fici GJ, Althaus JS, VonVoigtlander PF (1997) Effects of lazaroids and a peroxynitrite scavenger in a cell model of peroxynitrite toxicity. Free Radic Biol Med 22:223–228

    PubMed  CAS  Google Scholar 

  64. Fix AS, Horn JW, Wightman KA et al (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-d-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 123:204–215

    PubMed  CAS  Google Scholar 

  65. Frantseva MV, Kokarovtseva L, Perez Velazquez JL (2002) Ischemia-induced brain damage depends on specific gap–junctional coupling. J Cereb Blood Flow Metab 22:453–462

    PubMed  Google Scholar 

  66. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    PubMed  CAS  Google Scholar 

  67. Frederickson CJ, Hernandez MD, McGinty JF (1989) Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480:317–321

    PubMed  CAS  Google Scholar 

  68. Frerking M, Schmitz D, Zhou Q et al (2001) Kainate receptors depress excitatory synaptic transmission at CA3→CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 21:2958–2966

    PubMed  CAS  Google Scholar 

  69. Fukata Y, Adesnik H, Iwanaga T et al (2006) Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313:1792–1795

    PubMed  CAS  Google Scholar 

  70. Furukawa T, Hoshino S, Kobayashi S et al (2003) The glutamate AMPA receptor antagonist, YM872, attenuates cortical tissue loss, regional cerebral edema, and neurological motor deficits after experimental brain injury in rats. J Neurotrauma 20:269–278

    PubMed  Google Scholar 

  71. Gahm C, Danilov A, Holmin S et al (2005) Reduced neuronal injury after treatment with NG-nitro-l-arginine methyl ester (l-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion. Neurosurgery 57:1272–1281

    PubMed  Google Scholar 

  72. Gao J, Duan B, Wang DG et al (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646

    PubMed  CAS  Google Scholar 

  73. Geiger JR, Melcher T, Koh DS et al (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    PubMed  CAS  Google Scholar 

  74. Globus MY, Busto R, Dietrich WD et al (1988) Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neurosci Lett 91:36–40

    PubMed  CAS  Google Scholar 

  75. Globus MY, Busto R, Martinez E et al (1990) Ischemia induces release of glutamate in regions spared from histopathologic damage in the rat. Stroke 21:III43–III46

    PubMed  CAS  Google Scholar 

  76. Gonzalez-Zulueta M, Ensz LM, Mukhina G et al (1998) Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. J Neurosci 18:2040–2055

    PubMed  CAS  Google Scholar 

  77. Guttmann RP, Baker DL, Seifert KM et al (2001) Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem 78:1083–1093

    PubMed  CAS  Google Scholar 

  78. Hall ED, Detloff MR, Johnson K et al (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. J Neurotrauma 21:9–20

    PubMed  Google Scholar 

  79. Hall ED, Pazara KE, Braughler JM et al (1990) Nonsteroidal lazaroid U78517F in models of focal and global ischemia. Stroke 21:III83–III87

    PubMed  CAS  Google Scholar 

  80. Hall ED, Yonkers PA, McCall JM et al (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68:456–461

    PubMed  CAS  Google Scholar 

  81. Han D, Antunes F, Canali R et al (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    PubMed  CAS  Google Scholar 

  82. Hara H, Friedlander RM, Gagliardini V et al (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA 94:2007–2012

    PubMed  CAS  Google Scholar 

  83. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    PubMed  CAS  Google Scholar 

  84. Hara Y, Wakamori M, Ishii M et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9:163–173

    PubMed  CAS  Google Scholar 

  85. Heuss C, Scanziani M, Gahwiler BH et al (1999) G-protein-independent signaling mediated by metabotropic glutamate receptors. Nat Neurosci 2:1070–1077

    PubMed  CAS  Google Scholar 

  86. Hicks RR, Smith DH, Gennarelli TA et al (1994) Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Res 655:91–96

    PubMed  CAS  Google Scholar 

  87. Hillered L, Hallstrom A, Segersvard S et al (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9:607–616

    PubMed  CAS  Google Scholar 

  88. Hollmann M, Hartley M, Heinemann S (1991) Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252:851–853

    PubMed  CAS  Google Scholar 

  89. Hong SC, Goto Y, Lanzino G et al (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25:663–669

    PubMed  CAS  Google Scholar 

  90. Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18:195–199

    PubMed  CAS  Google Scholar 

  91. Ikonomidou C, Mosinger JL, Salles KS et al (1989) Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. J Neurosci 9:2809–2818

    PubMed  CAS  Google Scholar 

  92. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    PubMed  CAS  Google Scholar 

  93. Imai H, Graham DI, Masayasu H et al (2003) Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radic Biol Med 34:56–63

    PubMed  CAS  Google Scholar 

  94. Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    PubMed  CAS  Google Scholar 

  95. Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439

    PubMed  CAS  Google Scholar 

  96. Ischiropoulos H, Zhu L, Chen J et al (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298:431–437

    PubMed  CAS  Google Scholar 

  97. Jang YG, Ilodigwe D, Macdonald RL (2009) Metaanalysis of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage. Neurocrit Care 10:141–147

    PubMed  CAS  Google Scholar 

  98. Jia Y, Zhou J, Tai Y et al (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10:559–567

    PubMed  CAS  Google Scholar 

  99. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    PubMed  CAS  Google Scholar 

  100. Jorgensen MB, Diemer NH (1982) Selective neuron loss after cerebral ischemia in the rat: possible role of transmitter glutamate. Acta Neurol Scand 66:536–546

    Article  PubMed  CAS  Google Scholar 

  101. Kampfl A, Posmantur R, Nixon R et al (1996) mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J Neurochem 67:1575–1583

    Article  PubMed  CAS  Google Scholar 

  102. Kaneko S, Kawakami S, Hara Y et al (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101:66–76

    PubMed  CAS  Google Scholar 

  103. Kiedrowski L, Czyz A, Baranauskas G et al (2004) Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem 90:117–128

    PubMed  CAS  Google Scholar 

  104. Kim YH, Koh JY (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 177:407–418

    PubMed  CAS  Google Scholar 

  105. Kingston AE, O’Neill MJ, Bond A et al (1999) Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Ann N Y Acad Sci 890:438–449

    PubMed  CAS  Google Scholar 

  106. Koek W, Woods JH, Winger GD (1988) MK-801, a proposed noncompetitive antagonist of excitatory amino acid neurotransmission, produces phencyclidine-like behavioral effects in pigeons, rats and rhesus monkeys. J Pharmacol Exp Ther 245:969–974

    PubMed  CAS  Google Scholar 

  107. Koh JY, Suh SW, Gwag BJ et al (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    PubMed  CAS  Google Scholar 

  108. Koura SS, Doppenberg EM, Marmarou A et al (1998) Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochir Suppl (Wien) 71:244–246

    CAS  Google Scholar 

  109. Kuroda S, Tsuchidate R, Smith ML et al (1999) Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19:778–787

    PubMed  CAS  Google Scholar 

  110. Lafon-Cazal M, Pietri S, Culcasi M et al (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    PubMed  CAS  Google Scholar 

  111. Laine R, de Montellano PR (1998) Neuronal nitric oxide synthase isoforms alpha and mu are closely related calpain-sensitive proteins. Mol Pharmacol 54:305–312

    PubMed  CAS  Google Scholar 

  112. Lankiewicz S, Marc LC, Truc BN et al (2000) Activation of calpain I converts excitotoxic neuron death into a caspase-independent cell death. J Biol Chem 275:17064–17071

    PubMed  CAS  Google Scholar 

  113. Lanzino G, Kassell NF (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. J Neurosurg 90:1018–1024

    PubMed  CAS  Google Scholar 

  114. Lanzino G, Kassell NF, Dorsch NW et al (1999) Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa. J Neurosurg 90:1011–1017

    PubMed  CAS  Google Scholar 

  115. Lau A, Arundine M, Sun HS et al (2006) Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26:11540–11553

    PubMed  CAS  Google Scholar 

  116. Lazebnik YA, Kaufmann SH, Desnoyers S et al (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347

    PubMed  CAS  Google Scholar 

  117. Leach MJ, Marden CM, Miller AA (1986) Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia 27:490–497

    PubMed  CAS  Google Scholar 

  118. JY L, Cole TB, Palmiter RD et al (2000) Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20:RC79

    Google Scholar 

  119. Lees KR, Asplund K, Carolei A et al (2000) Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators. Lancet 355:1949–1954

    PubMed  CAS  Google Scholar 

  120. Lees KR, Zivin JA, Ashwood T et al (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354:588–600

    PubMed  CAS  Google Scholar 

  121. Li J, Billiar TR, Talanian RV et al (1997) Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun 240:419–424

    PubMed  CAS  Google Scholar 

  122. Lin JH, Weigel H, Cotrina ML et al (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    PubMed  CAS  Google Scholar 

  123. DR LUCAS, NEWHOUSE JP (1957) The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58:193–201

    Google Scholar 

  124. Malgouris C, Bardot F, Daniel M et al (1989) Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci 9:3720–3727

    PubMed  CAS  Google Scholar 

  125. Marklund N, Clausen F, McIntosh TK et al (2001) Free radical scavenger posttreatment improves functional and morphological outcome after fluid percussion injury in the rat. J Neurotrauma 18:821–832

    PubMed  CAS  Google Scholar 

  126. Marklund N, Lewander T, Clausen F et al (2001) Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J Cereb Blood Flow Metab 21:1259–1267

    PubMed  CAS  Google Scholar 

  127. Marshall LF, Maas AI, Marshall SB et al (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89:519–525

    PubMed  CAS  Google Scholar 

  128. Martinez-Guijarro FJ, Soriano E, Del Rio JA et al (1991) Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20:834–843

    PubMed  CAS  Google Scholar 

  129. Matsuda T, Arakawa N, Takuma K et al (2001) SEA0400, a novel and selective inhibitor of the Na+–Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256

    PubMed  CAS  Google Scholar 

  130. Mayer ML, Vyklicky L Jr (1989) The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol 415:351–365

    PubMed  CAS  Google Scholar 

  131. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    PubMed  CAS  Google Scholar 

  132. McIntosh TK, Thomas M, Smith D et al (1992) The novel 21-aminosteroid U74006F attenuates cerebral edema and improves survival after brain injury in the rat. J Neurotrauma 9:33–46

    PubMed  CAS  Google Scholar 

  133. McIntosh TK, Vink R, Soares H et al (1989) Effects of the N-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. J Neurotrauma 6:247–259

    PubMed  CAS  Google Scholar 

  134. McLaughlin B, Pal S, Tran MP et al (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21:3303–3311

    PubMed  CAS  Google Scholar 

  135. Michetti M, Salamino F, Melloni E et al (1995) Reversible inactivation of calpain isoforms by nitric oxide. Biochem Biophys Res Commun 207:1009–1014

    PubMed  CAS  Google Scholar 

  136. RG Miller, JD Mitchell, M Lyon et al. (2007) Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev CD001447

  137. Mohr S, Zech B, Lapetina EG et al (1997) Inhibition of caspase-3 by S-nitrosation and oxidation caused by nitric oxide. Biochem Biophys Res Commun 238:387–391

    PubMed  CAS  Google Scholar 

  138. Morikawa E, Huang Z, Moskowitz MA (1992) l-Arginine decreases infarct size caused by middle cerebral arterial occlusion in SHR. Am J Physiol 263:H1632–H1635

    PubMed  CAS  Google Scholar 

  139. Morikawa E, Moskowitz MA, Huang Z et al (1994) l-Arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat. Stroke 25:429–435

    PubMed  CAS  Google Scholar 

  140. Morris GF, Bullock R, Marshall SB et al (1999) Failure of the competitive N-methyl-d-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. The Selfotel Investigators. J Neurosurg 91:737–743

    PubMed  CAS  Google Scholar 

  141. Moubarak RS, Yuste VJ, Artus C et al (2007) Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol 27:4844–4862

    PubMed  CAS  Google Scholar 

  142. Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    PubMed  CAS  Google Scholar 

  143. Muir KW, Holzapfel L, Lees KR (2000) Phase II clinical trial of sipatrigine (619C89) by continuous infusion in acute stroke. Cerebrovasc Dis 10:431–436

    PubMed  CAS  Google Scholar 

  144. Nadler MJ, Hermosura MC, Inabe K et al (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    PubMed  CAS  Google Scholar 

  145. Nakagawa D, Ohshima Y, Takusagawa M et al (2001) Functional modification of cytochrome c by peroxynitrite in an electron transfer reaction. Chem Pharm Bull (Tokyo) 49:1547–1554

    CAS  Google Scholar 

  146. Nicholls P, Malviya AN (1968) Inhibition of nonphosphorylating electron transfer by zinc. The problem of delineating interaction sites. Biochemistry 7:305–310

    PubMed  CAS  Google Scholar 

  147. Nilsson P, Hillered L, Ponten U et al (1990) Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637

    PubMed  CAS  Google Scholar 

  148. Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:RC111

    PubMed  CAS  Google Scholar 

  149. O’Neill MJ, Hicks C, Ward M (1996) Neuroprotective effects of 7-nitroindazole in the gerbil model of global cerebral ischaemia. Eur J Pharmacol 310:115–122

    PubMed  Google Scholar 

  150. Ogawa A, Yoshimoto T, Kikuchi H et al (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9:112–118

    PubMed  CAS  Google Scholar 

  151. Oguro K, Jover T, Tanaka H et al (2001) Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice. J Neurosci 21:7534–7542

    PubMed  CAS  Google Scholar 

  152. Ohishi H, Ogawa-Meguro R, Shigemoto R et al (1994) Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 13:55–66

    PubMed  CAS  Google Scholar 

  153. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    PubMed  CAS  Google Scholar 

  154. Olney JW, Sharpe LG (1969) Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166:386–388

    PubMed  CAS  Google Scholar 

  155. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    PubMed  CAS  Google Scholar 

  156. Ozyurt E, Graham DI, Woodruff GN et al (1988) Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 8:138–143

    PubMed  CAS  Google Scholar 

  157. Park CK, Nehls DG, Teasdale GM et al (1989) Effect of the NMDA antagonist MK-801 on local cerebral blood flow in focal cerebral ischaemia in the rat. J Cereb Blood Flow Metab 9:617–622

    PubMed  CAS  Google Scholar 

  158. Perraud AL, Fleig A, Dunn CA et al (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    PubMed  CAS  Google Scholar 

  159. Persechini A, McMillan K, Masters BS (1995) Inhibition of nitric oxide synthase activity by Zn2+ ion. Biochemistry 34:15091–15095

    PubMed  CAS  Google Scholar 

  160. Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151–158

    PubMed  Google Scholar 

  161. Pignataro G, Tortiglione A, Scorziello A et al (2004) Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology 46:439–448

    PubMed  CAS  Google Scholar 

  162. Polster BM, Basanez G, Etxebarria A et al (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    PubMed  CAS  Google Scholar 

  163. Portera-Cailliau C, Price DL, Martin LJ (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. J Comp Neurol 378:88–104

    PubMed  CAS  Google Scholar 

  164. Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  165. Radi R, Beckman JS, Bush KM et al (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288:481–487

    PubMed  CAS  Google Scholar 

  166. Radi R, Rodriguez M, Castro L et al (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    PubMed  CAS  Google Scholar 

  167. Randall RD, Thayer SA (1992) Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J Neurosci 12:1882–1895

    PubMed  CAS  Google Scholar 

  168. Ransom RW, Stec NL (1988) Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate, glycine, and polyamines. J Neurochem 51:830–836

    PubMed  CAS  Google Scholar 

  169. Reisberg B, Doody R, Stoffler A et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    PubMed  CAS  Google Scholar 

  170. Reynolds IJ, Hastings TG (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J Neurosci 15:3318–3327

    PubMed  CAS  Google Scholar 

  171. Rock DM, Macdonald RL (1992) The polyamine spermine has multiple actions on N-methyl-d-aspartate receptor single-channel currents in cultured cortical neurons. Mol Pharmacol 41:83–88

    PubMed  CAS  Google Scholar 

  172. Rothman S (1984) Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J Neurosci 4:1884–1891

    PubMed  CAS  Google Scholar 

  173. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  174. Salgo MG, Bermudez E, Squadrito GL et al (1995) Peroxynitrite causes DNA damage and oxidation of thiols in rat thymocytes [corrected]. Arch Biochem Biophys 322:500–505

    PubMed  CAS  Google Scholar 

  175. Salgo MG, Stone K, Squadrito GL et al (1995) Peroxynitrite causes DNA nicks in plasmid pBR322. Biochem Biophys Res Commun 210:1025–1030

    PubMed  CAS  Google Scholar 

  176. Sattler R, Charlton MP, Hafner M et al (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364

    Article  PubMed  CAS  Google Scholar 

  177. Sattler R, Xiong Z, Lu WY et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    PubMed  CAS  Google Scholar 

  178. Schewe T (1995) Molecular actions of ebselen—an antiinflammatory antioxidant. Gen Pharmacol 26:1153–1169

    PubMed  CAS  Google Scholar 

  179. Schmitz D, Mellor J, Frerking M et al (2001) Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 98:11003–11008

    PubMed  CAS  Google Scholar 

  180. Schrammel A, Gorren AC, Schmidt K et al (2003) S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radic Biol Med 34:1078–1088

    PubMed  CAS  Google Scholar 

  181. Schulz JB, Matthews RT, Jenkins BG et al (1995) Improved therapeutic window for treatment of histotoxic hypoxia with a free radical spin trap. J Cereb Blood Flow Metab 15:948–952

    PubMed  CAS  Google Scholar 

  182. el NM Seif, Peruche B, Rossberg C et al (1990) Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 185:19–24

    Google Scholar 

  183. Sen N, Hara MR, Ahmad AS et al (2009) GOSPEL: a neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron 63:81–91

    PubMed  CAS  Google Scholar 

  184. Sen N, Hara MR, Kornberg MD et al (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873

    PubMed  CAS  Google Scholar 

  185. Sensi SL, Canzoniero LM, Yu SP et al (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 17:9554–9564

    PubMed  CAS  Google Scholar 

  186. Sensi SL, Ton-That D, Sullivan PG et al (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci USA 100:6157–6162

    PubMed  CAS  Google Scholar 

  187. Sensi SL, Yin HZ, Carriedo SG et al (1999) Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci USA 96:2414–2419

    PubMed  CAS  Google Scholar 

  188. Sheardown MJ, Nielsen EO, Hansen AJ et al (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247:571–574

    PubMed  CAS  Google Scholar 

  189. Sheline CT, Behrens MM, Choi DW (2000) Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J Neurosci 20:3139–3146

    PubMed  CAS  Google Scholar 

  190. Shuaib A, Lees KR, Lyden P et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571

    PubMed  CAS  Google Scholar 

  191. Singleton RH, Povlishock JT (2004) Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: evidence for multiple independent injury phenotypes. J Neurosci 24:3543–3553

    PubMed  CAS  Google Scholar 

  192. Snider BJ, Gottron FJ, Choi DW (1999) Apoptosis and necrosis in cerebrovascular disease. Ann N Y Acad Sci 893:243–253

    PubMed  CAS  Google Scholar 

  193. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683

    PubMed  CAS  Google Scholar 

  194. Stamler JS, Simon DI, Osborne JA et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448

    PubMed  CAS  Google Scholar 

  195. Steinberg GK, George CP, DeLaPaz R et al (1988) Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits. Stroke 19:1112–1118

    PubMed  CAS  Google Scholar 

  196. Suh SW, Chen JW, Motamedi M et al (2000) Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852:268–273

    PubMed  CAS  Google Scholar 

  197. Sun HS, Doucette TA, Liu Y et al (2008) Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke 39:2544–2553

    PubMed  CAS  Google Scholar 

  198. Sun HS, Jackson MF, Martin LJ et al (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    PubMed  CAS  Google Scholar 

  199. Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    PubMed  CAS  Google Scholar 

  200. Takahashi M, Ni JW, Kawasaki-Yatsugi S et al (1998) YM872, a novel selective alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, reduces brain damage after permanent focal cerebral ischemia in cats. J Pharmacol Exp Ther 284:467–473

    PubMed  CAS  Google Scholar 

  201. Takasago T, Peters EE, Graham DI et al (1997) Neuroprotective efficacy of ebselen, an anti-oxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusion. Br J Pharmacol 122:1251–1256

    PubMed  CAS  Google Scholar 

  202. Tanabe Y, Nomura A, Masu M et al (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    PubMed  CAS  Google Scholar 

  203. Tenneti L, D’Emilia DM, Troy CM et al (1998) Role of caspases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 71:946–959

    Article  PubMed  CAS  Google Scholar 

  204. Tenneti L, Lipton SA (2000) Involvement of activated caspase-3-like proteases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 74:134–142

    PubMed  CAS  Google Scholar 

  205. Thayer SA, Wang GJ (1995) Glutamate-induced calcium loads: effects on energy metabolism and neuronal viability. Clin Exp Pharmacol Physiol 22:303–304

    PubMed  CAS  Google Scholar 

  206. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    PubMed  CAS  Google Scholar 

  207. Tonder N, Johansen FF, Frederickson CJ et al (1990) Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109:247–252

    PubMed  CAS  Google Scholar 

  208. Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature 345:347–350

    PubMed  CAS  Google Scholar 

  209. Traystman RJ, Klaus JA, DeVries AC et al (2001) Anticonvulsant lamotrigine administered on reperfusion fails to improve experimental stroke outcomes. Stroke 32:783–787

    PubMed  CAS  Google Scholar 

  210. Tymianski M, Charlton MP, Carlen PL et al (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104

    PubMed  CAS  Google Scholar 

  211. van der Vliet A, Hoen PA, Wong PS et al (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. J Biol Chem 273:30255–30262

    PubMed  CAS  Google Scholar 

  212. Vedia L, McDonald B, Reep B et al (1992) Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267:24929–24932

    Google Scholar 

  213. Vignes M, Collingridge GL (1997) The synaptic activation of kainate receptors. Nature 388:179–182

    PubMed  CAS  Google Scholar 

  214. Volbracht C, Chua BT, Ng CP et al (2005) The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. J Neurochem 93:1280–1292

    PubMed  CAS  Google Scholar 

  215. Wada K, Chatzipanteli K, Busto R, et al (1999) Effects of L-NAME and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. J Neurotrauma 16:203--212

    PubMed  CAS  Google Scholar 

  216. Wahl F, Allix M, Plotkine M et al (1993) Effect of riluzole on focal cerebral ischemia in rats. Eur J Pharmacol 230:209–214

    PubMed  CAS  Google Scholar 

  217. Wahl F, Renou E, Mary V et al (1997) Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Res 756:247–255

    PubMed  CAS  Google Scholar 

  218. Wang GJ, Thayer SA (1996) Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. J Neurophysiol 76:1611–1621

    PubMed  CAS  Google Scholar 

  219. Wang Y, Kim NS, Li X et al (2009) Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). J Neurochem 110:687–696

    PubMed  CAS  Google Scholar 

  220. Wehage E, Eisfeld J, Heiner I et al (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277:23150–23156

    PubMed  CAS  Google Scholar 

  221. Williams K (1997) Interactions of polyamines with ion channels. Biochem J 325(Pt 2):289–297

    PubMed  CAS  Google Scholar 

  222. Wu HY, Yuen EY, Lu YF et al (2005) Regulation of N-methyl-d-aspartate receptors by calpain in cortical neurons. J Biol Chem 280:21588–21593

    PubMed  CAS  Google Scholar 

  223. Xiong ZG, Zhu XM, Chu XP et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    PubMed  CAS  Google Scholar 

  224. Xue D, Slivka A, Buchan AM (1992) Tirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23:894–899

    PubMed  CAS  Google Scholar 

  225. Yakovlev AG, Knoblach SM, Fan L et al (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424

    PubMed  CAS  Google Scholar 

  226. Yamaguchi T, Sano K, Takakura K et al (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12–17

    PubMed  CAS  Google Scholar 

  227. Yamakura F, Taka H, Fujimura T et al (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273:14085–14089

    PubMed  CAS  Google Scholar 

  228. Yokoyama M, Koh J, Choi DW (1986) Brief exposure to zinc is toxic to cortical neurons. Neurosci Lett 71:351–355

    PubMed  CAS  Google Scholar 

  229. Yu SW, Andrabi SA, Wang H et al (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA 103:18314–18319

    PubMed  CAS  Google Scholar 

  230. Yu SW, Wang H, Poitras MF et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    PubMed  CAS  Google Scholar 

  231. Yue TL, Gu JL, Lysko PG et al (1992) Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil global brain ischemia and in cultured rat cerebellar neurons. Brain Res 574:193–197

    PubMed  CAS  Google Scholar 

  232. Zhang C, Raghupathi R, Saatman KE et al (1998) Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 52:342–349

    PubMed  CAS  Google Scholar 

  233. Zhang J, Dawson VL, Dawson TM et al (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689

    PubMed  CAS  Google Scholar 

  234. Zhang X, Chen J, Graham SH et al (2002) Intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82:181–191

    PubMed  CAS  Google Scholar 

  235. Zhang Y, Wang H, Li J et al (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24:10616–10627

    PubMed  CAS  Google Scholar 

  236. Zhou P, Qian L, Iadecola C (2005) Nitric oxide inhibits caspase activation and apoptotic morphology but does not rescue neuronal death. J Cereb Blood Flow Metab 25:348–357

    PubMed  CAS  Google Scholar 

  237. Zingarelli B, O’Connor M, Wong H et al (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J Immunol 156:350–358

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tymianski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, A., Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch - Eur J Physiol 460, 525–542 (2010). https://doi.org/10.1007/s00424-010-0809-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0809-1

Keywords

Navigation