Skip to main content
Log in

Response-specific sources of dual-task interference in human pre-motor cortex

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

It is difficult to perform two tasks at the same time. Such performance limitations are exemplified by the psychological refractory period (PRP): when participants make distinct motor responses to two stimuli presented in rapid succession, the response to the second stimulus is increasingly slowed as the time interval between the two stimuli is decreased. This impairment is thought to reflect a central limitation in selecting the appropriate response to each stimulus, but not in perceptually encoding the stimuli. In the present study, it was sought to determine which brain regions are specifically involved in response selection under dual-task conditions by contrasting fMRI brain activity measured from a response selection manipulation that increased dual-task costs, with brain activity measured from an equally demanding manipulation that affected perceptual visibility. While a number of parieto-frontal areas involved in response selection were activated by both dual-task manipulations, the dorsal pre-motor cortex, and to a lesser extent the inferior frontal cortex, were specifically engaged by the response selection manipulation. These results suggest that the pre-motor cortex is an important neural locus of response selection limitation under dual-task situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allport, A. (1987). Selection for action: some behaviorial and neurophysiological considerations of attention and action. In: Heuer H., Sanders A. F. (eds.), Perspectives on perception and action. Erlbaum, Hillsdale, pp. 395–419.

    Google Scholar 

  • Arnell K. M., & Duncan J. (2002). Separate and shared sources of dual-task cost in stimulus identification and response selection. Cognit Psychol 44:105–147.

    Article  PubMed  Google Scholar 

  • Boussaoud D. (2001). Attention versus intention in the primate pre-motor cortex. NeuroImage, 14: S40–45.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. J Exp Psychol: Hum Percept Perform, 21, 109–127.

    Article  Google Scholar 

  • Chun, M. M., & Potter, M. C. (2001). The attentional blink and task switching within and across modalities. In: Shapiro K. (Ed.), The limits of attention: temporal constraints in human information processing. Oxford University Press, NewYork, pp. 20–35.

    Google Scholar 

  • De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. J Exp Psychol: Hum Percept & Perform, 19, 965–980.

    Article  Google Scholar 

  • Decary, A., & Richer, F. (1995). Response selection deficits in frontal excisions. Neuropsychologia, 33, 1243–1253.

    Article  PubMed  Google Scholar 

  • D’Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279–281.

    Article  PubMed  Google Scholar 

  • Dreher, J. C., & Grafman, J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13, 329–339.

    Article  PubMed  Google Scholar 

  • Dum, R. P., & Strick, P. L. (2002). Motor areas in the frontal lobe of the primate, Physiol & Behav, 77, 677–682.

    Article  Google Scholar 

  • Duncan, J. (1980). The locus of interference in the perception of simultaneous stimuli. Psychological Review, 87, 272–300.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Owen, A. M. (2000). Common regions of the frontal lobe recruited by diverse cognitive demands. Trends Cognitive Sci, 23, 475–483.

    Google Scholar 

  • Durston, S., Davidson, M.C., Thomas, K.M., Worden, M.S., Tottenham, N., Martinez, A., Watts, R., Ulug, A.M., & Casey, B.J. (2003). Parametric manipulation of conflict and response competition using rapid mixed-trial event-related fMRI. Neuroimage, 20, 2135–2141.

    Article  PubMed  Google Scholar 

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance Medicine, 33, 636–647.

    Google Scholar 

  • Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends Cognit Sci, 5, 10–16.

    Article  Google Scholar 

  • Hazeltine, E., Poldrack, R., & Gabrieli, J. D. E. (2000). Neural activation during response competition. J Cognit Neurosci, 12, 118–129.

    Article  Google Scholar 

  • Herath, P., Klingberg, T., Young, J., Amunts, K., & Roland, P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: an fMRI study. Cerebral Cortex, 11, 796–805.

    Article  PubMed  Google Scholar 

  • Hernandez, A., Zainos, A., & Romo, R. (2002). Temporal evolution of a decision-making process in medial pre-motor cortex. Neuron, 33, 959–972.

    Article  PubMed  Google Scholar 

  • Ivry, R. B., Franz, E. A., Kingstone, A., & Johnston, J. C. (1998). The psychological refractory period effect following callosotomy: Uncoupling of lateralized response codes. J Exp Psychol: Hum Percept & Perform, 24, 463–480.

    Article  Google Scholar 

  • Jiang, Y. (2004) Resolving dual-task interference: an fMRI study. Neuroimage 22, 748–754.

    Article  PubMed  Google Scholar 

  • Jiang, Y., & Kanwisher, N. (2003a). Common neural substrates for response selection across modalities and mapping paradigms. J Cognit Neurosci, 15, 1082–1094.

    Google Scholar 

  • Jiang, Y., & Kanwisher, N. (2003b). Common neural mechanisms for response selection and perceptual processing. J Cognit Neurosci, 15, 1095–1110.

    Article  Google Scholar 

  • Jiang, Y., Saxe, R. & Kanwisher, N. (2004) Functional magnetic resonance imaging provides new constraints on theories of the psychological refractory period. Psychol Sci 15, 390–396.

    Article  PubMed  Google Scholar 

  • Jolicoeur, P. (1998). Modulation of the attentional blink by on-line response selection: Evidence from speeded and unspeeded Task-sub-1 decisions. Memory & Cognition, 26, 1014–1032.

    Google Scholar 

  • Jolicoeur, P. (1999). Dual-task interference and visual encoding. J Exp Psychol: Hum Percept & Perform, 25, 596–616.

    Article  Google Scholar 

  • Jolicoeur, P., Dell’ Acqua, R., & Crebolder, J. M. (2001). The attentional blink bottleneck. In K. Shapiro (Ed.), The limits of attention: temporal constraints in human information processing. OU Press, New York, pp. 82–99.

    Google Scholar 

  • Kantowitz, B. H. (1974). Double stimulation. In B. H. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition. Erlbaum, Potomac, pp. 83–131.

    Google Scholar 

  • Karlin, L., & Kestenbaum, R. (1968). Effects of number of alternatives on the psychological refractory period. Q J Exp Psychol, 20, 167–178.

    PubMed  Google Scholar 

  • Kimura, D. (1993). Neuromotor mechanisms in human communication. Oxford University Press, New York.

    Google Scholar 

  • Kurata, K., Tsuji, T., Naraki, S., Seino, M., & Abe, Y. (2000). Activation of the dorsal pre-motor cortex and pre-supplementary motor area of humans during an auditory conditional motor task. J Neurophysiol, 84, 1667–1672.

    PubMed  Google Scholar 

  • Lee, K. M., Chang, K.-H., & Roh, J. K. (1999). Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage, 9, 117–123.

    Article  PubMed  Google Scholar 

  • Luck, S. J. (1998). Sources of dual-task interference: evidence from human electrophysiology. Psychol Sci, 9, 223–227.

    Article  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835–1838.

    Article  PubMed  Google Scholar 

  • Marois, R., Chun, M. M., & Gore, J. C. (2000). Neural correlates of the attentional blink. Neuron, 28, 299–308.

    Article  PubMed  Google Scholar 

  • Marois, R., Chun, M. M., & Gore, J. C. (2004). A common parieto-frontal network is recruited under both low visibility and high perceptual interference. J Neurophysiol, 92, 2985–2992.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Navon, D., & Miller, J. (2002). Queuing or Sharing? A Critical Evaluation of the Single-Bottleneck Notion. Cognit Psychol, 44, 193–251.

    Article  PubMed  Google Scholar 

  • Osman, A., & Moore, C. M. (1993). The locus of dual-task interference: Psychological refractory effects on movement-related brain potentials. J Exp Psychol: Hum Percept & Perform, 19, 1292–1312.

    Article  Google Scholar 

  • Pashler, H. (1989). Dissociations and dependencies between speed and accuracy: Evidence for a two-component theory of divided attention in simple tasks. Cognit Psychol, 21, 469–514.

    Article  Google Scholar 

  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychol Bull, 116, 220–244.

    Article  PubMed  Google Scholar 

  • Pashler, H. E. (1998). The Psychology of Attention. MIT, Cambridge.

    Google Scholar 

  • Pashler, H., & Johnston, J. C. (1989). Chronometric evidence for central postponement in temporally overlapping tasks. Q J Exp Psychol, 41A, 19–45.

    Google Scholar 

  • Pashler, H., Luck, S. J., Hillyard, S. A., Mangun, G. R., O’Brien, S., & Gazzaniga, M. S. (1994). Sequential operation of disconnected cerebral hemispheres in split-brain patients. Neuroreport, 5, 2381–2384.

    PubMed  Google Scholar 

  • Passingham, R. E. (1993). The Frontal Lobes and Voluntary Action. Oxford UP, Oxford.

    Google Scholar 

  • Picard, N., & Strick, P. L. (2001). Imaging the pre-motor areas. Curr Opinion Neurobiol, 11, 663–672.

    Article  Google Scholar 

  • Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? J Exp Psychol: Hum Percept & Perform, 18, 849–860.

    Article  Google Scholar 

  • Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S. J., & Passingham, R. E. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science, 288, 1656–1660.

    Article  PubMed  Google Scholar 

  • Rushworth, M. F., Nixon, P. D., Renowden, S., Wade, D. T., & Passingham, R. E. (1997). The left parietal cortex and motor attention. Neuropsychologia, 35, 1261–1273.

    Article  PubMed  Google Scholar 

  • Rushworth, M. F., Paus, T., & Sipila, P. K. (2001a). Attention systems and the organization of the human parietal cortex. J Neurosci, 21, 5262–5271.

    Google Scholar 

  • Rushworth, M. F. S., Krams, M., & Passingham, R. E. (2001b). The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. J Cognit Neurosci, 13, 698–710.

    Article  Google Scholar 

  • Rushworth, M. F. S., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). Role of the Human Medial Frontal Cortex in Task Switching: A Combined fMRI and TMS Study. J Neurophysiol, 87, 2577–2592.

    PubMed  Google Scholar 

  • Ruthruff, E., Miller, J., & Lachmann, T. (1995). Does mental rotation require central mechanisms? J Exp Psychol: Hum Percept & Perform, 21, 552–570.

    Article  Google Scholar 

  • Ruthruff, E., & Pashler, H. (2001). Perceptual and central interference in dual-task performance. In K. Shapiro (Ed.), The limits of attention: temporal constraints in human information processing Oxford U Press, New York, pp. 100–123.

    Google Scholar 

  • Schall, J. D. (2001). Neural basis of deciding, choosing and acting. Nat Rev Neurosci, 2, 33–42.

    Article  PubMed  Google Scholar 

  • Schubert, T., & Szameitat, A. J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. Cognit Brain Res, 17, 733–746.

    Article  Google Scholar 

  • Schumacher, E. H., & D’Esposito, M. (2002). Neural implementation of response selection in humans as revealed by localized effects of stimulus-response compatibility on brain activation. Hum Brain Mapping, 17, 193–201.]

    Article  Google Scholar 

  • Schumacher, E. H., Elston, P.A., & D’Esposito, M. (2002). Neural evidence for representation-specific response selection. J Cognit Neurosci, 15, 1111–1121.

    Article  Google Scholar 

  • Shapiro, K., Hillstrom, A. P., & Husain, M. (2002). Control of Visuotemporal Attention by Inferior Parietal and Superior Temporal Cortex. Curr Biol, 12, 1320–1325.

    Article  PubMed  Google Scholar 

  • Sternberg, S. (1969). The discovery of processing stages: Extensions of Donder’s method. Acta Psychologica, 30, 276–315.

    Article  Google Scholar 

  • Szameitat, A. J., Schubert, T., Muller, K., & von Cramon, D. Y. (2002). Localization of Executive Functions in Dual-Task Performance with fMRI. J Cognit Neurosci, 14, 1184–1199.

    Article  Google Scholar 

  • Talairach J, Tournoux P (1988). Co-planar stereotaxic atlas of the human brain. Thieme, New York.

    Google Scholar 

  • Thompson-Schill, S. L., Swick, D., Farah, M. J., D’Esposito, M., Kan, I. P., & Knight, R. T. (1998). Verb generation in patients with focal frontal lesions: a neuropsychological test of neuroimaging findings. Proc Natl Acad Sci USA, 95, 15855–15860.

    Article  PubMed  Google Scholar 

  • Tombu, M., & Jolicoeur, P. (2003). A central capacity sharing model of dual-task performance. J Exp Psychol: Hum Percept and Perform, 29, 3–18.

    Google Scholar 

  • Van Selst, M., & Jolicoeur, P. (1997). Decision and response in dual-task interference. Cognit Psychol, 33, 266–307.

    Article  PubMed  Google Scholar 

  • Welford A. T. (1980). The single channel hypothesis. In A. T. Welford (Ed.), Reaction Time Academic Press, New York, pp. 215–252.

    Google Scholar 

  • Welford, A. T. (1952). The “psychological refractory period” and the timing of high-speed performance: A review and theory. Br J Psychol, 43, 2–19.

    Google Scholar 

  • Wise, S. P., & Murray, E. A. (2000). Arbitraty associations between antecedents and actions. Trends Neurosci, 23, 271–276.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare they have no financial conflict of interest regarding this study. We thank Jay Todd and Andy Snyder for expert technical assistance, and Gordon Logan, Jeff Schall, and Isabel Gauthier for helpful comments on earlier versions of the manuscript. This work was supported by NSF grant 0094992 and NIMH grant RO1MH70776 to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Marois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marois, R., Larson, J.M., Chun, M.M. et al. Response-specific sources of dual-task interference in human pre-motor cortex. Psychological Research 70, 436–447 (2006). https://doi.org/10.1007/s00426-005-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-005-0022-6

Keywords

Navigation