Skip to main content
Log in

On the validity and generality of transfer effects in cognitive training research

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Evaluation of training effectiveness is a long-standing problem of cognitive intervention research. The interpretation of transfer effects needs to meet two criteria, generality and specificity. We introduce each of the two, and suggest ways of implementing them. First, the scope of the construct of interest (e.g., working memory) defines the expected generality of transfer effects. Given that the constructs of interest are typically defined at the latent level, data analysis should also be conducted at the latent level. Second, transfer should be restricted to measures that are theoretically related to the trained construct. Hence, the construct of interest also determines the specificity of expected training effects; to test for specificity, study designs should aim at convergent and discriminant validity. We evaluate the recent cognitive training literature in relation to both criteria. We conclude that most studies do not use latent factors for transfer assessment, and do not test for convergent and discriminant validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Searches were conducted in March 2013.

  2. [Exact training duration could not be estimated in three studies (Lustig & Flegal, 2008; Martensson & Lovden, 2011; McDougall & House, 2012)].

References

  • Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J., et al. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97–101. doi:10.1038/Nature12486.

    PubMed  PubMed Central  Google Scholar 

  • Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology-General, 130(2), 224–237. doi:10.1037/0096-3445.130.2.224.

    PubMed  Google Scholar 

  • Ball, K. K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., et al. (2002). Effects of cognitive training interventions with older adults—a randomized controlled trial. JAMA-Journal of the American Medical Association, 288(18), 2271–2281. doi:10.1001/jama.288.18.2271.

    Google Scholar 

  • Baltes, P. B., Dittmann-Kohli, F., & Kliegl, R. (1986). Reserve-capacity of the elderly in aging-sensitive tests of fluid intelligence: replication and extension. Psychology and Aging, 1(2), 172–177. doi:10.1037/0882-7974.1.2.172.

    PubMed  Google Scholar 

  • Baltes, P. B., & Lindenberger, U. (1988). On the range of cognitive plasticity in old age as a function of experience: 15 years of intervention research. Behavior Therapy, 19, 283–300. doi:10.1016/S0005-7894(88)80003-0.

    Google Scholar 

  • Baltes, P. B., Reese Hayne, W., & Nesselroade John, R. (1988). Life-span developmental psychology: introduction to research methods. Hillsdale: Erlbaum.

    Google Scholar 

  • Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128(4), 612–637. doi:10.1037//0033-2909.128.4.612.

    PubMed  Google Scholar 

  • Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765–777. doi:10.1037/a0013494.

    PubMed  PubMed Central  Google Scholar 

  • Bergman Nutley, S., Söderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Developmental Science, 14(3), 591–601. doi:10.1111/j.1467-7687.2010.01022.x.

    PubMed  Google Scholar 

  • Bherer, L., Kramer, A. F., & Peterson, M. S. (2008). Transfer effects in task-set cost and dual-task cost after dual-task training in older and younger adults: further evidence for cognitive plasticity in attentional control in late adulthood. Experimental Aging Research, 34(3), 188–219. doi:10.1080/03610730802070068.

    PubMed  PubMed Central  Google Scholar 

  • Bherer, L., Kramer, A. F., Peterson, M. S., Colcombe, S., Erickson, K., & Becic, E. (2005). Training effects on dual-task performance: are there age-related differences in plasticity of attentional control? Psychology and Aging, 20(4), 695–709. doi:10.1037/0882-7974.20.4.695.

    PubMed  Google Scholar 

  • Boot, W. R., Basak, C., Erickson, K. I., Neider, M., Simons, D. J., Fabiani, M., et al. (2010). Transfer of skill engendered by complex task training under conditions of variable priority. Acta Psychologica, 135(3), 349–357. doi:10.1016/j.actpsy.2010.09.005.

    PubMed  Google Scholar 

  • Boot, W. R., Blakely, D. P., & Simons, D. J. (2011). Do action video games improve perception and cognition? Frontiers in Psychology, 2, 226. doi:10.3389/fpsyg.2011.00226.

    PubMed  PubMed Central  Google Scholar 

  • Boot, W. R., Simons, D. J., Stothart, C., & Stutts, C. (2013). The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspectives on Psychological Science, 8(4), 445–454. doi:10.1177/1745691613491271.

    Google Scholar 

  • Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778. doi:10.1037/a0020683.

    PubMed  Google Scholar 

  • Brehmer, Y., Rieckmann, A., Bellander, M., Westerberg, H., Fischer, H., & Backman, L. (2011). Neural correlates of training-related working-memory gains in old age. Neuroimage, 58(4), 1110–1120. doi:10.1016/j.neuroimage.2011.06.079.

    PubMed  Google Scholar 

  • Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait–multimethod matrix. Psychological Bulletin, 56(2), 81–105. doi:10.1037/h0046016.

    PubMed  Google Scholar 

  • Carlson, M. C., Saczynski, J. S., Rebok, G. W., Seeman, T., Glass, T. A., McGill, S., et al. (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: experience corps (R). Gerontologist, 48(6), 793–801.

    PubMed  Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities. Cambridge: University Press.

    Google Scholar 

  • Cattell, R. B. (1952). Factor analysis: an introduction and manual for psychologists and social scientists. New York: Harper.

    Google Scholar 

  • Cattell, R. B. (1971). Abilities: their structure, growth and action. Boston: Houghton Mifflin

    Google Scholar 

  • Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychonomic Bulletin and Review, 17(2), 193–199. doi:10.3758/pbr.17.2.193.

    PubMed  Google Scholar 

  • Chooi, W.-T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542. doi:10.1016/j.intell.2012.07.004.

    Google Scholar 

  • Colcombe, S., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science, 14(2), 125–130. doi:10.1111/1467-9280.t01-1-01430.

    PubMed  Google Scholar 

  • Colom, R., Martinez-Molina, A., Chun Shin, P., & Santacreu, J. (2010). Intelligence, working memory, and multitasking performance. Intelligence, 38(6), 543–551. doi:10.1016/j.intell.2010.08.002.

    Google Scholar 

  • Conway, A. R. A., & Getz, S. J. (2010). Cognitive ability: does working memory training enhance intelligence? Current Biology, 20(8), R362–R364. doi:10.1016/j.cub.2010.03.001.

    PubMed  Google Scholar 

  • Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 3, 163–183. doi:10.1016/S0160-2896(01)00096-4.

  • Costa, P. T., & McCrae, R. R. (1992). Normal personality-assessment in clinical practice: the NEO personality inventory. Psychological Assessment, 4(1), 5–13. doi:10.1037/1040-3590.4.1.5.

    Google Scholar 

  • Craik, F. I. M., & Salthouse, T. A. (2000). Handbook of aging and cognition. Hillsdale: Erlbaum.

    Google Scholar 

  • Cronbach, L. J., & Furby, L. (1970). How we should measure “change”: or should we? Psychological Bulletin, 74(1), 68–80. doi:10.1037/h0029382.

    Google Scholar 

  • Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512. doi:10.1126/science.1155466.

    PubMed  Google Scholar 

  • Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35(1), 13–21. doi:10.1016/j.intell.2006.02.001.

    Google Scholar 

  • Dege, F., Wehrum, S., Stark, R., & Schwarzer, G. (2011). The influence of two years of school music training in secondary school on visual and auditory memory. European Journal of Developmental Psychology, 8(5), 608–623. doi:10.1080/17405629.2011.590668.

    Google Scholar 

  • Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychology of Learning and Motivation: Advances in Research and Theory, 44(44), 145–199.

    Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. Journal of Experimental Psychology-General, 128(3), 309–331. doi:10.1037/0096-3445.128.3.309.

    PubMed  Google Scholar 

  • Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7(2), 336–353. doi:10.1037/1528-3542.7.2.336.

    PubMed  Google Scholar 

  • Fabel, K., Wolf, S. A., Ehninger, D., Babu, H., Leal-Galicia, P., & Kempermann, G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Frontiers in Neuroscience, 3, 50. doi:10.3389/neuro.22.002.2009.

    PubMed  PubMed Central  Google Scholar 

  • Forte, R., Boreham, C. A. G., Leite, J. C., De Vito, G., Brennan, L., Gibney, E. R., et al. (2013). Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clinical Interventions in Aging, 8, 19–27. doi:10.2147/cia.s36514.

    PubMed  PubMed Central  Google Scholar 

  • Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13(1), 1–4. doi:10.1111/j.0963-7214.2004.01301001.x.

  • Green, C. S., Sugarman, M. A., Medford, K., Klobusicky, E., & Bavelier, D. (2012). The effect of action video game experience on task-switching. Computers in Human Behavior, 28(3), 984–994. doi:10.1016/j.chb.2011.12.020.

    PubMed  PubMed Central  Google Scholar 

  • Hasher, L., Stolzfus, E. R., Zacks, R. T., & Rypma, B. (1991). Age and inhibition. Journal of Experimental Psychology-Learning Memory and Cognition, 17(1), 163–169. doi:10.1037//0278-7393.17.1.163.

    Google Scholar 

  • Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139(1), 105–118. doi:10.1016/j.neuroscience.2005.04.067.

    PubMed  Google Scholar 

  • Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2009). Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 1–65. doi:10.1111/j.1539-6053.2009.01034.x.

    Google Scholar 

  • Hopko, D. R., Crittendon, J. A., Grant, E., & Wilson, S. A. (2005). The impact of anxiety on performance IQ. Anxiety Stress and Coping, 18(1), 17–35. doi:10.1080/10615800412336436.

    Google Scholar 

  • Horn, J.L. (1965). An empirical comparison of methods for estimating factor scores. Educational and Psychological Measurement, 25. doi:10.1177/001316446502500202.

  • Irwing, P., Hamza, A., Khaleefa, O., & Lynn, R. (2008). Effects of Abacus training on the intelligence of Sudanese children. Personality and Individual Differences, 45(7), 694–696. doi:10.1016/j.paid.2008.06.011.

    Google Scholar 

  • Jackson, J. J., Hill, P. L., Payne, B. R., Roberts, B. W., & Stine-Morrow, E. A. L. (2012). Can an old dog learn (and want to experience) new tricks? Cognitive training increases openness to experience in older adults. Psychology and Aging, 27(2), 286–292. doi:10.1037/a0025918.

    PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6829–6833. doi:10.1073/pnas.0801268105.

    PubMed  PubMed Central  Google Scholar 

  • Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—implications for training and transfer. Intelligence, 38(6), 625–635. doi:10.1016/j.intell.2010.09.001.

    Google Scholar 

  • Jausovec, N., & Jausovec, K. (2012). Sex differences in mental rotation and cortical activation patterns: can training change them? Intelligence, 40(2), 151–162. doi:10.1016/j.intell.2012.01.005.

    Google Scholar 

  • Jensen, A. R. (1998). The g factor: the science of mental ability. Westport: Praeger.

    Google Scholar 

  • Jobe, J. B., Smith, D. M., Ball, K., Tennstedt, S. L., Marsiske, M., Willis, S. L., et al. (2001). ACTIVE: a cognitive intervention trial to promote independence in older adults. Controlled Clinical Trials, 22(4), 453–479. doi:10.1016/s0197-2456(01)00139-8.

    PubMed  PubMed Central  Google Scholar 

  • Jonides, J. (2004). How does practice makes perfect? Nature Neuroscience, 7(1), 10–11. doi:10.1038/nn0104-10.

    PubMed  Google Scholar 

  • Kane, M. J., Poole, B. J., Tuholski, S. W., & Engle, R. W. (2006). Working memory capacity and the top-down control of visual search: exploring the boundaries of “executive attention”. Journal of Experimental Psychology-Learning Memory and Cognition, 32(4), 749–777. doi:10.1037/0278-7393.32.4.749.

    Google Scholar 

  • Karbach, J., & Kray, J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Developmental Science, 12(6), 978–990. doi:10.1111/j.1467-7687.2009.00846.x.

    PubMed  Google Scholar 

  • Kempermann, G. (2008). The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends in Neurosciences, 31(4), 163–169. doi:10.1016/j.tins.2008.01.002.

    PubMed  Google Scholar 

  • Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: The Guilford Press.

    Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. doi:10.1016/j.tics.2010.05.002.

    PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186. doi:10.1097/00004583-200502000-00010.

    PubMed  Google Scholar 

  • Kramer, A. F., Larish, J. F., & Strayer, D. L. (1995). Training for attentional control in dual-task settings—a comparison of young and old adults. Journal of Experimental Psychology-Applied, 1(1), 50–76. doi:10.1037/1076-898X.1.1.50.

    Google Scholar 

  • Kray, J., Karbach, J., Haenig, S., & Freitag, C. (2012). Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder? Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00180.

  • Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and Aging, 15(1), 126–147. doi:10.1037/0882-7974.15.1.126.

    PubMed  Google Scholar 

  • Kühn, S., Schmiedek, F., Noack, H., Wenger, E., Bodammer, N. C., Lindenberger, U., et al. (2013). The dynamics of change in striatal activity following updating training. Human Brain Mapping, 34(7), 1530–1541. doi:10.1002/hbm.22007.

    PubMed  Google Scholar 

  • Kuwajima, M., & Sawaguchi, T. (2010). Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography. Experimental Brain Research, 206(4), 381–397. doi:10.1007/s00221-010-2415-z.

    PubMed  Google Scholar 

  • Kyllonen, P., & Christal, R. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14(4), 389–433. doi:10.1016/S0160-2896(05)80012-1.

    Google Scholar 

  • Lee, H., Boot, W. R., Basak, C., Voss, M. W., Prakash, R. S., Neider, M., et al. (2012). Performance gains from directed training do not transfer to untrained tasks. Acta Psychologica, 139(1), 146–158. doi:10.1016/j.actpsy.2011.11.003.

    PubMed  Google Scholar 

  • Li, S.-C., Schmiedek, F., Huxhold, O., Roecke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731–742. doi:10.1037/a0014343.

    PubMed  Google Scholar 

  • Little, T. D., Lindenberger, U., & Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: when “good” indicators are bad and “bad” indicators are good. Psychological Methods, 4(2), 192–211. doi:10.1037//1082-989x.4.2.192.

    Google Scholar 

  • Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136(4), 659–676. doi:10.1037/a0020080.

    PubMed  Google Scholar 

  • Lövdén, M., Schaefer, S., Noack, H., Bodammer, N. C., Kühn, S., Heinze, H. J., et al. (2012). Spatial navigation training protects the hippocampus against age- related changes during early and late adulthood. Neurobiology of Aging, 33, 620.e9–620.e22.

    Google Scholar 

  • Lussier, M., Gagnon, C., & Bherer, L. (2012). An investigation of response and stimulus modality transfer effects after dual-task training in younger and older. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00129.

  • Lustig, C., & Flegal, K. E. (2008). Targeting latent function: encouraging effective encoding for successful memory training and transfer. Psychology and Aging, 23(4), 754–764. doi:10.1037/a0014295.

    PubMed  PubMed Central  Google Scholar 

  • Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychology Review, 19(4), 504–522. doi:10.1007/s11065-009-9119-9.

    PubMed  PubMed Central  Google Scholar 

  • MacCallum, R. C., Widaman, K. F., Zhang, S. B., & Hong, S. H. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84–99. doi:10.1037//1082-989x.4.1.84.

    Google Scholar 

  • Mackay-Brandt, A. (2011). Training attentional control in older adults. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 18(4), 432–451. doi:10.1080/13825585.2011.568046.

    PubMed  PubMed Central  Google Scholar 

  • Mackey, A. P., Hill, S. S., Stone, S. I., & Bunge, S. A. (2011). Differential effects of reasoning and speed training in children. Developmental Science, 14(3), 582–590. doi:10.1111/j.1467-7687.2010.01005.x.

    PubMed  Google Scholar 

  • Maillot, P., Perrot, A., & Hartley, A. (2012). Effects of interactive physical-activity video-game training on physical and cognitive function in older adults. Psychology and Aging, 27(3), 589–600. doi:10.1037/a0026268.

    PubMed  Google Scholar 

  • Martensson, J., & Lövdén, M. (2011). Do intensive studies of a foreign language improve associative memory performance? Frontiers in Psychology, 2, 12.

    PubMed  PubMed Central  Google Scholar 

  • McArdle, J. J. (2007). Five steps in the structural factor analysis of longitudinal data. In R. Cudeck & R. McCallum (Eds.), Factor analysis at 100 years. Mahwah: Erlbaum.

    Google Scholar 

  • McArdle, J. J. (2009). Latent variable modelling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605. doi:10.1146/annurev.psych.60.110707.163612.

    PubMed  Google Scholar 

  • McArdle, J. J., & Nesselroade, J. R. (1994). Using multivariate data to structure developmental change. In S. H. Reese & H. W. Cohen (Eds.), Life-span developmental psychology: methodological contributions. Hillsdale: Erlbaum.

    Google Scholar 

  • McArdle, J. J., & Prindle, J. J. (2008). A latent change score analysis of a randomized clinical trial in reasoning training. Psychology and Aging, 23(4), 702–719. doi:10.1037/a0014349.

    PubMed  Google Scholar 

  • McDougall, S., & House, B. (2012). Brain training in older adults: evidence of transfer to memory span performance and pseudo-Matthew effects. Aging Neuropsychology and Cognition, 19(1–2), 195–221. doi:10.1080/13825585.2011.640656.

    Google Scholar 

  • McNab, F., Varrone, A., Farde, L., Jucaite, A., Bystritsky, P., Forssberg, H., et al. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science, 323(5915), 800–802. doi:10.1126/science.1166102.

    PubMed  Google Scholar 

  • Melby-Lervag, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review. Developmental Psychology, 49(2), 270–291. doi:10.1037/a0028228.

    PubMed  Google Scholar 

  • Meredith, W., & Horn, J. (2001). The role of factorial invariance in modeling growth and change. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change. Decade of behavior (pp. 203–240). Washington, DC: American Psychological Association.

    Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. doi:10.1006/cogp.1999.0734.

    PubMed  Google Scholar 

  • Molenaar, P. C. M., & Campbell, C. G. (2009). The new person-specific paradigm in psychology. Current Directions in Psychological Science, 18, 112–117. doi:10.1111/j.1467-8721.2009.01619.x.

    Google Scholar 

  • Moody, D. E. (2009). Can intelligence be increased by training on a task of working memory? Intelligence, 37(4), 327–328. doi:10.1016/j.intell.2009.04.005.

    Google Scholar 

  • Moreno, S., Bialystok, E., Barac, R., Schellenberg, E. G., Cepeda, N. J., & Chau, T. (2011). Short-term music training enhances verbal intelligence and executive function. Psychological Science, 22(11), 1425–1433. doi:10.1177/0956797611416999.

    PubMed  PubMed Central  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18(1), 46–60. doi:10.3758/s13423-010-0034-0.

    PubMed  Google Scholar 

  • Noack, H., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2009). Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restorative Neurology and Neuroscience, 27(5), 435–453. doi:10.3233/RNN-2009-0496.

    PubMed  Google Scholar 

  • Noack, H., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2013). Age-related differences in temporal and spatial dimensions of episodic memory performance before and after hundred days of practice. Psychology and Aging, 28(2), 467–480. doi:10.1037/a0031489.

    PubMed  Google Scholar 

  • Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Nozawa, T., Kambara, T., et al. (2013). Brain training game boosts executive functions, working memory and processing speed in the young adults: a randomized controlled trial. PLoS One, 8(2), e55518. doi:10.1371/journal.pone.0055518.

    PubMed  PubMed Central  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. doi:10.1038/nn1165.

    PubMed  Google Scholar 

  • Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., et al. (2010). Putting brain training to the test. Nature, 465(7299), U775–U776. doi:10.1038/nature09042.

    Google Scholar 

  • Peng, H., Wen, J., Wang, D., & Gao, Y. (2012). The impact of processing speed training on working memory in old adults. Journal of Adult Development, 19(3), 150–157. doi:10.1007/s10804-012-9142-6.

    Google Scholar 

  • Penner, I.-K., Vogt, A., Stoecklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: a comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733. doi:10.1080/09602011.2012.686883.

    PubMed  Google Scholar 

  • Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5638–5643. doi:10.1073/pnas.0611721104.

    PubMed  PubMed Central  Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. Journal of Experimental Psychology-General, 142(2), 359–379. doi:10.1037/a0029082.

    PubMed  Google Scholar 

  • Revelle, W. (1993). Individual differences in personality and motivation: ‘non-cognitive’ determinants of cognitive performance. In A. Baddeley & L. Weiskrantz (Eds.), Attention: selection, awareness, and control: a tribute to Donald Broadbent. Oxford: Oxford University Press.

    Google Scholar 

  • Richmond, L. L., Morrison, A. B., Chein, J. M., & Olson, I. R. (2011). Working memory training and transfer in older adults. Psychology and Aging, 26(4), 813–822. doi:10.1037/a0023631.

    PubMed  Google Scholar 

  • Robinson, W. S. (2009). Ecological correlations and the behavior of individuals. International Journal of Epidemiology, 38(2), 337–341. doi:10.1093/ije/dyn357.

    PubMed  Google Scholar 

  • Rudebeck, S.R., Bor, D., Ormond, A., O’Reilly, J.X., & Lee, A.C.H. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. Plos One, 7(11). doi:10.1371/journal.pone.0050431.

  • Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00166.

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. doi:10.1037/0033-295x.103.3.403.

    PubMed  Google Scholar 

  • Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin and Review, 19(1), 58–65. doi:10.3758/s13423-011-0177-7.

    PubMed  Google Scholar 

  • Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Frontiers in Aging Neuroscience, 2. doi:10.3389/fnagi.2010.00027.

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2010). Does working memory training generalize? Psychologica Belgica, 50(3–4), 245–276.

    Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654. doi:10.1037/a0027473.

    PubMed  Google Scholar 

  • Simpson, T., Camfield, D., Pipingas, A., Macpherson, H., & Stough, C. (2012). Improved processing speed: online computer-based cognitive training in older adults. Educational Gerontology, 38(7), 445–458. doi:10.1080/03601277.2011.559858.

    Google Scholar 

  • Söderqvist, S., Nutley, S.B., Ottersen, J., Grill, K.M., & Klingberg, T. (2012). Computerized training of non-verbal reasoning and working memory in children with intellectual disability. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00271.

  • Stern, Y., Blumen, H. M., Rich, L. W., Richards, A., Herzberg, G., & Gopher, D. (2011). Space Fortress game training and executive control in older adults: a pilot intervention. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 18(6), 653–677. doi:10.1080/13825585.2011.613450.

    PubMed  PubMed Central  Google Scholar 

  • Sternberg, R. J. (2008). Increasing fluid intelligence is possible after all. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 6791–6792. doi:10.1073/pnas.0803396105.

    PubMed  PubMed Central  Google Scholar 

  • Studer-Luethi, B., Jaeggi, S. M., Buschkuehl, M., & Perrig, W. J. (2012). Influence of neuroticism and conscientiousness on working memory training outcome. Personality and Individual Differences, 53(1), 44–49. doi:10.1016/j.paid.2012.02.012.

    Google Scholar 

  • Thorell, L. B., Lindqvist, S., Nutley, S. B., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12(1), 106–113. doi:10.1111/j.1467-7687.2008.00745.x.

    PubMed  Google Scholar 

  • Thorndike, E. L. (1906). Principles of teaching. New York: Seiler.

    Google Scholar 

  • Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. (I). Psychological Review, 8, 247–261. doi:10.1037/h0074898.

    Google Scholar 

  • Tranter, L. J., & Koutstaal, W. (2008). Age and flexible thinking: an experimental demonstration of the beneficial effects of increased cognitively stimulating activity on fluid intelligence in healthy older adults. Aging Neuropsychology and Cognition, 15(2), 184–207. doi:10.1080/13825580701322163.

    Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191–198. doi:10.1038/35044558.

    PubMed  Google Scholar 

  • Voelcker-Rehage, C., Godde, B., & Staudinger, U.M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00026.

  • von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi:10.1016/j.jml.2013.02.002.

    Google Scholar 

  • Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., Kramer, A.F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2. doi:10.3389/fnagi.2010.00032.

  • Wang, M.-Y., Chang, C.-Y., & Su, S.-Y. (2011). What’s cooking? Cognitive training of executive function in the elderly. Frontiers in Psychology, 2, 228.

    PubMed  PubMed Central  Google Scholar 

  • Wen, M.-C., Butler, L. T., & Koutstaal, W. (2013). Improving insight and non-insight problem solving with brief interventions. British Journal of Psychology, 104, 97–118. doi:10.1111/j.2044-8295.2012.02107.x.

    PubMed  Google Scholar 

  • Wenger, E., Schaefer, S., Noack, H., Kühn, S., Mårtensson, J., Heinze, H. J., et al. (2012). Cortical thickness changes following spatial navigation training in adulthood and aging. Neuroimage, 59(4), 3389–3397. doi:10.1016/j.neuroimage.2011.11.015.

    PubMed  Google Scholar 

  • West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120(2), 272–292. doi:10.1037/0033-2909.120.2.272.

    PubMed  Google Scholar 

  • Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27(5), 455–471. doi:10.3233/rnn-2009-0495.

    PubMed  PubMed Central  Google Scholar 

  • Zinke, K., Einert, M., Pfennig, L., & Kliegel, M. (2012). Plasticity of executive control through task switching training in adolescents. Frontiers in Human Neuroscience, 6. doi:10.3389/fnhum.2012.00041.

Download references

Acknowledgments

We would like to thank Ulman Lindenberger for contributing helpful comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Noack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noack, H., Lövdén, M. & Schmiedek, F. On the validity and generality of transfer effects in cognitive training research. Psychological Research 78, 773–789 (2014). https://doi.org/10.1007/s00426-014-0564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0564-6

Keywords

Navigation