Skip to main content

Advertisement

Log in

Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

Over the normal lifespan, a subpopulation of myenteric neurons in the small and large intestines dies. This loss is one possible mechanism for the disruptions of gastrointestinal function seen in the elderly. Little, however, is known about how the glia constituting the supportive cells of the myenteric plexus may change with aging and the losses of the enteric neurons. The goal of the present study, therefore, was to determine what, if any, changes occur in the glia associated with myenteric neurons in the aged gut. Two experimental groups, consisting of adult (5–6 months of age, n=8) or aged (26 months of age, n=8) virgin male Fischer 344 rats, fed ad libitum, were examined. The duodenum, jejunum, ileum, colon, and rectum from each rat were prepared as whole mounts, and indirect immunofluorescence was used to visualize the myenteric glia and neurons (antibodies to S-100 and the HuC/D protein, respectively). Separate counts of glia and neurons from the same specimens were determined, and these counts were expressed both as per ganglionic area and as per ganglion to correct for “dilution” effects resulting from age-associated changes in tissue area. Significant reductions in both the numbers of glia as well as neurons occurred in every region of the small and large intestine sampled from aged rats, except for the rectum, where a nonsignificant decrease was observed. Glial loss was proportional to neuronal death, suggesting an interdependency between the two cell types. Thus, an understanding of the nature of the neuron-glia interaction in the enteric nervous system may provide insight into the deterioration of function seen in the aged gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bishop AE, Carlei F, Lee V, Trojanowski J, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron specific enolase, GFAP and S-100. A possible means for assessing the morphological and functional status of the enteric nervous system. Histochemistry 82:93–97

    CAS  PubMed  Google Scholar 

  • Brehmer A, Blaser B, Seitz G, Schrodl F, Neuhuber W (2004) Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. Histochem Cell Biol 121:13–20

    Article  CAS  PubMed  Google Scholar 

  • Brookes SJ (2001) Classes of enteric nerve cells in the guinea-pig small intestine. Anat Rec 262:58–70

    Article  CAS  PubMed  Google Scholar 

  • Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    Article  CAS  PubMed  Google Scholar 

  • Cabarrocas J, Savidge TC, Liblau RS (2003) Role of enteric glial cells in inflammatory bowel disease. Glia 41:81–93

    Article  PubMed  Google Scholar 

  • Corns RA, Hidaka H, Santer RM (2002) Neurocalcin-alpha immunoreactivity in the enteric nervous system of young and aged rats. Cell Calcium 31:53–58

    Article  CAS  PubMed  Google Scholar 

  • Cotrina ML, Nedergaard M (2002) Astrocytes in the aging brain. J Neurosci Res 67:1–10

    Article  CAS  PubMed  Google Scholar 

  • Cowen T, Johnson RJ, Soubeyre V, Santer RM (2000) Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 47:653–660

    Article  CAS  PubMed  Google Scholar 

  • Ferrante F, Geppetti P, Amenta F (1991) Age-related changes in substance P and vasoactive intestinal polypeptide immunoreactivity in the rat stomach and small intestine. Arch Gerontol Geriatr 13:81–87

    Article  CAS  PubMed  Google Scholar 

  • Furness JB (2000) Types of neurons in the enteric nervous system. J Auton Nerv Syst 81:87–96

    Article  CAS  PubMed  Google Scholar 

  • Gabella G (1971) Glia cells in the myenteric plexus. Zeitschrift Fur Naturforshung 26:244–245

    CAS  Google Scholar 

  • Gabella G (1984) Size of neurons and glial cells in the intramural ganglia of the hypertrophic intestine of the guinea-pig. J Neurocytol 13:73–84

    CAS  PubMed  Google Scholar 

  • Gabella G (1989) Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology 96:1487–1493

    CAS  PubMed  Google Scholar 

  • Gabella G, Trigg P (1984) Size of neurons and glial cells in the enteric ganglia of mice, guinea-pigs, rabbits and sheep. J Neurocytol 13:49–71

    CAS  PubMed  Google Scholar 

  • Gershon MD (1981) The enteric nervous system. Ann Rev Neurosci 4:227–272

    Article  CAS  PubMed  Google Scholar 

  • Gershon MD (1998) V. Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am J Physiol 275:G869–873

    CAS  PubMed  Google Scholar 

  • Gershon MD, Rothman TP (1991) Enteric glia. Glia 4:195–204

    CAS  PubMed  Google Scholar 

  • Hanani M, Reichenbach A (1994) Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res 278:153–160

    Article  CAS  PubMed  Google Scholar 

  • Hanani M, Fellig Y, Udassin R, Freund HR (2004) Age-related changes in the morphology of the myenteric plexus of the human colon. Auton Neurosci 113:71–78

    Article  PubMed  Google Scholar 

  • Hebel R, Stromberg MW (1976) Anatomy of the laboratory rat. Waverly Press, Baltimore

  • Jessen KR, Mirsky R (1983) Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J Neurosci 3:2206–2218

    CAS  PubMed  Google Scholar 

  • Johnson RJ, Schemann M, Santer RM, Cowen T (1998) The effects of age on the overall population and on sub-populations of myenteric neurons in the rat small intestine. J Anat 192:479–488

    Article  PubMed  Google Scholar 

  • Karaosmanoglu T, Aygun B, Wade PR, Gershon MD (1996) Regional differences in the number of neurons in the myenteric plexus of the guinea pig small intestine and colon: an evaluation of markers used to count neurons. Anat Rec 244:470–480

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Suzuki M, Endo T, Tsuji S, Daniel EE (1986) Framework of the enteric nerve plexuses: an immunocytochemical study in the guinea pig jejunum using an antiserum to S-100 protein. Arch Histol Jpn 49:159–188

    CAS  PubMed  Google Scholar 

  • Komuro T, Tokui K, Zhou DS (1996) Identification of the interstitial cells of Cajal. Histopathol 11:769–786

    CAS  PubMed  Google Scholar 

  • McDougal JN, Miller MS, Burks TF, Kreulen DL (1984) Age-related changes in colonic function in rats. Am J Physiol 247:G542–G546

    CAS  PubMed  Google Scholar 

  • Nada O, Kawana T (1988) Immunohistochemical identification of supportive cell types in the enteric nervous system of the rat colon and rectum. Cell Tissue Res 251:523–529

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Gao N, Hu HZ, Liu S, Gao C, Kim G, Ren J, Xia Y, Peck OC, Wood JD (2002) Immunoreactivity of Hu proteins facilitates identification of myenteric neurones in guinea-pig small intestine. Neurogastroenterol Motil 14:197–204

    Article  CAS  PubMed  Google Scholar 

  • Parr EJ, Sharkey KA (1997) Multiple mechanisms contribute to myenteric plexus ablation induced by benzalkonium chloride in the guinea-pig ileum. Cell Tissue Res 289:253–264

    Article  CAS  PubMed  Google Scholar 

  • Patterson LM, Zheng H, Ward SM, Berthoud HR (2001) Immunohistochemical identification of cholecystokinin A receptors on interstitial cells of Cajal, smooth muscle, and enteric neurons in rat pylorus. Cell Tissue Res 305:11–23

    Article  CAS  PubMed  Google Scholar 

  • Peters A (2002) Structural changes that occur during normal aging of primate cerebral hemispheres. Neurosci Biobehav Rev 26:733–741

    Article  PubMed  Google Scholar 

  • Phillips RJ, Powley TL (2001) As the gut ages: timetables for aging of innervation vary by organ in the Fischer 344 rat. J Comp Neurol 434:358–377

    Article  CAS  PubMed  Google Scholar 

  • Phillips RJ, Kieffer EJ, Powley TL (2003a) Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons. Auton Neurosci 106:69–83

    Article  PubMed  Google Scholar 

  • Phillips RJ, Kieffer EJ, Powley TL (2003b) Age-related losses of enteric glial cells are associated with neuronal death in the myenteric plexus of the small and large intestines. Program No. 393.10. Abstract viewer/itinerary planner. Society for Neuroscience, Washington, DC. Online

  • Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Meth 133:99–107

    Article  Google Scholar 

  • Ruhl A, Nasser Y, Sharkey KA (2004) Enteric Glia. Neurogastroenterol 16:44–49

    Article  Google Scholar 

  • Santer RM (1994) Survival of the population of NADPH-diaphorase stained myenteric neurons in the small intestine of aged rats. J Auton Nerv Syst 49:115–121

    Article  CAS  PubMed  Google Scholar 

  • Santer RM, Baker DM (1988) Enteric neuron numbers and sizes in Auerbach’s plexus in the small and large intestine of adult and aged rats. J Auton Nerv Syst 25:59–67

    Article  CAS  PubMed  Google Scholar 

  • Scheuermann DW, Stach W, Timmermans JP, Adriaensen D, De Groodt-Lasseel MH (1989) Neuron-specific enolase and S-100 protein immunohistochemistry for defining the structure and topographical relationship of the different enteric nerve plexuses in the small intestine of the pig. Cell Tissue Res 256:65–75

    Article  CAS  PubMed  Google Scholar 

  • Smits GJM, Lefebvre RA (1996) Influence of aging on gastric emptying of liquids, small intestine transit, and fecal output in rats. Exp Gerontol 31:589–596

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp M, Geerling I, Seufferlein T, von Boyen G, Egger B, Grossmann J, Ludwig L, Adler G, Reinshagen M (2003) Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 124:1748–1757

    Article  CAS  PubMed  Google Scholar 

  • Turturro A, Witt WW, Lewis S, Hass BS, Lipman RD, Hart R (1999) Growth curves and survival characteristics of the animals used in the biomarkers of aging program. J Gerontol A Biol Sci Med Sci 54:B492–B501

    CAS  PubMed  Google Scholar 

  • Unger JW (1998) Glial reaction in aging and Alzheimer’s disease. Microsc Res Tech 43:24–28

    Article  CAS  PubMed  Google Scholar 

  • Varga F (1976) Transit time changes with age in the gastrointestinal tract of the rat. Digestion 14:319–324

    CAS  PubMed  Google Scholar 

  • Wade PR (2002) Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 283:G489–495

    CAS  PubMed  Google Scholar 

  • Wade PR, Cowen T (2004) Neurodegeneration: a key factor in the ageing gut. Neurogastroenterol Motil 16:19–23

    Article  PubMed  Google Scholar 

  • Wedel T, Roblick UJ, Ott V, Eggers R, Schiedeck THK, Krammer H-J, Bruch H-P (2001) Oligoneuronal hypoganglionosis in patients with idiopathic slow-transit constipation. Dis Colon Rectum 45:54–62

    Google Scholar 

  • Wu M, Van Nassauw L, Kroese AB, Adriaensen D, Timmermans JP (2003) Myenteric nitrergic neurons along the rat esophagus: evidence for regional and strain differences in age-related changes. Histochem Cell Biol 119:395–403

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A preliminary report of the present findings was presented in abstract form at the annual meeting of the Society for Neuroscience (Phillips et al. 2003b). This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIH DK27627 and DK61317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, R.J., Kieffer, E.J. & Powley, T.L. Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. Anat Embryol 209, 19–30 (2004). https://doi.org/10.1007/s00429-004-0426-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-004-0426-x

Keywords

Navigation