Skip to main content
Log in

Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The human parietal cortex is a highly differentiated structure consisting of cytoarchitectonically defined subareas that are specifically connected with other cortical and subcortical areas. Based on evidence from neurophysiological studies in subhuman primates these subareas are supposed to be functionally highly specialized. Here, we reviewed 51 different neuroimaging studies on healthy subjects with activation of the parietal lobe in statistical parametric maps. Running a cluster analysis on the stereotactic coordinates of the centers of gravity of the activation areas and plotting them into Talairach space showed a high consistency of the mean activation foci for similar paradigms across different laboratories and functional imaging modalities. Our meta-analysis exposed seven distinct pairs of quite symmetrically distributed subareas of the parietal cortex of each hemisphere as well as three unpaired regions that are critically involved in the generation of limb and eye movements in egocentric and allocentric coordinates, but also in attention, memory and cognitive problem solving. These data highlights the modular organization of the human parietal lobe. By its locally interspersed distributed circuits it orchestrates specialized cognitive subfunctions interfacing perception and action. Our meta-analysis provides a new framework for understanding information processing in the human parietal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23:4689–4699

    PubMed  CAS  Google Scholar 

  • Azari NP, Nickel J, Wunderlich G et al (2001) Neural correlates of religious experience. Eur J Neurosci 13:1649–1652

    Article  PubMed  CAS  Google Scholar 

  • Binkofski F, Butler A, Buccino G et al (2003) Mirror apraxia affects the peripersonal mirror space. A combined lesion and cerebral activation study. Exp Brain Res 153:210–219

    Article  PubMed  Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans A (1995) Neural correlates of mental transformations of the body-in-space. Proc Natl Acad Sci USA 92:11180–11184

    Article  PubMed  CAS  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296

    Article  PubMed  CAS  Google Scholar 

  • Brett M (2002) The MNI brain and the Talairach atlas. 14-2-2002. Ref Type: Internet Communication

  • Caminiti R, Ferraina S, Johnson PB (1996) The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex 6:319–328

    Article  PubMed  CAS  Google Scholar 

  • Chaminade T, Decety J (2002) Leader or follower? Involvement of the inferior parietal lobule in agency. Neuroreport 13:1975–1978

    Article  PubMed  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383:618–621

    Article  PubMed  CAS  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    PubMed  CAS  Google Scholar 

  • Decety J, Grezes J, Costes N et al (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(Pt 10):1763–1777

    Article  PubMed  Google Scholar 

  • Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S (1999) Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284:970–974

    Article  PubMed  CAS  Google Scholar 

  • Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RS (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84:393–402

    Article  PubMed  CAS  Google Scholar 

  • Desmurget M, Grea H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–1928

    PubMed  CAS  Google Scholar 

  • Dolan RJ, Fink GR, Rolls E et al (1997) How the brain learns to see objects and faces in an impoverished context. Nature 389:596–599

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg H (2002) Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. J Neurosci 22:5074–5080

    PubMed  CAS  Google Scholar 

  • Faillenot I, Toni I, Decety J, Gregoire MC, Jeannerod M (1997) Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb Cortex 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333

    Article  PubMed  CAS  Google Scholar 

  • Farrer C, Frith CD (2002) Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15:596–603

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RS, Dolan RJ (1995) The mind’s eye—precuneus activation in memory-related imagery. Neuroimage 2:195–200

    Article  PubMed  CAS  Google Scholar 

  • Foerster O (1936) Sensorischer Kortex. In: Bumke OFO (ed) Allgemeine Neurologie. Julius Springer Verlag, Berlin

    Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S et al (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, May JG III, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Article  PubMed  CAS  Google Scholar 

  • Gurd JM, Amunts K, Weiss PH et al (2002) Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain 125:1024–1038

    Article  PubMed  Google Scholar 

  • Hermsdorfer J, Goldenberg G, Wachsmuth C et al (2001) Cortical correlates of gesture processing: clues to the cerebral mechanisms underlying apraxia during the imitation of meaningless gestures. Neuroimage 14:149–161

    Article  PubMed  CAS  Google Scholar 

  • Jancke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cereb Cortex 11:114–121

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    Article  PubMed  CAS  Google Scholar 

  • Jessen F, Erb M, Klose U, Lotze M, Grodd W, Heun R (1999) Activation of human language processing brain regions after the presentation of random letter strings demonstrated with event-related functional magnetic resonance imaging. Neurosci Lett 270:13–16

    Article  PubMed  CAS  Google Scholar 

  • Kawashima R, Roland PE, O’Sullivan BT (1995) Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. Cereb Cortex 5:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kertzman C, Schwarz U, Zeffiro TA, Hallett M (1997) The role of posterior parietal cortex in visually guided reaching movements in humans. Exp Brain Res 114:170–183

    Article  PubMed  CAS  Google Scholar 

  • Konen CS, Kleiser R, Wittsack HJ, Bremmer F, Seitz RJ (2004) The encoding of saccadic eye movements within human posterior parietal cortex. Neuroimage 22:304–314

    Article  PubMed  Google Scholar 

  • Kuhtz-Buschbeck JP, Ehrsson HH, Forssberg H (2001) Human brain activity in the control of fine static precision grip forces: an fMRI study. Eur J Neurosci 14:382–390

    Article  PubMed  CAS  Google Scholar 

  • Lancaster JL (2000) Talairach Daemon. Ref Type: Internet Communication

  • Leiguarda RC, Marsden CD (2000) Limb apraxias: higher-order disorders of sensorimotor integration. Brain 123(Pt 5):860–879

    Article  PubMed  Google Scholar 

  • Makuuchi M, Kaminaga T, Sugishita M (2003) Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Brain Res Cogn Brain Res 16:338–347

    Article  PubMed  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T, Crawford JD (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  • Milner AD, Goodale MA (1993) Visual pathways to perception and action. Prog Brain Res 95:317–337

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Doyon J, Petrides M, Evans AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–364

    Article  PubMed  CAS  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  PubMed  CAS  Google Scholar 

  • Parsons LM, Fox PT, Downs JH et al (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375:54–58

    Article  PubMed  CAS  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  PubMed  CAS  Google Scholar 

  • Perry RJ, Zeki S (2000) The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. Brain 123(Pt 11):2273–2288

    Article  PubMed  Google Scholar 

  • Pesenti M, Zago L, Crivello F et al (2001) Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nat Neurosci 4:103–107

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296

    Article  PubMed  CAS  Google Scholar 

  • Rowe JB, Toni I, Josephs O, Frackowiak RS, Passingham RE (2000) The prefrontal cortex: response selection or maintenance within working memory? Science 288:1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat Neurosci 4:546–550

    PubMed  CAS  Google Scholar 

  • Rushworth MF, Paus T, Sipila PK (2001) Attention systems and the organization of the human parietal cortex. J Neurosci 21:5262–5271

    PubMed  CAS  Google Scholar 

  • Sakai K, Hikosaka O, Takino R, Miyauchi S, Nielsen M, Tamada T (2000) What and when: parallel and convergent processing in motor control. J Neurosci 20:2691–2700

    PubMed  CAS  Google Scholar 

  • Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22:443–451

    Article  PubMed  CAS  Google Scholar 

  • Seitz RJ, Binkofski F (2003) Modular organization of parietal lobe functions as revealed by functional activation studies. Adv Neurol 93:281–292

    PubMed  Google Scholar 

  • Seitz RJ, Stephan KM, Binkofski F (2000) Control of action as mediated by the human frontal lobe. Exp Brain Res 133:71–80

    Article  PubMed  CAS  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Shikata E, Hamzei F, Glauche V et al (2001) Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J Neurophysiol 85:1309–1314

    PubMed  CAS  Google Scholar 

  • Simon O, Mangin JF, Cohen L, Le Bihan D, Dehaene S (2002) Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33:475–487

    Article  PubMed  CAS  Google Scholar 

  • Stoeckel MC, Weder B, Binkofski F, Buccino G, Shah NJ, Seitz RJ (2003) A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study. Neuroimage 19:1103–1114

    Article  PubMed  Google Scholar 

  • Suchan B, Yaguez L, Wunderlich G et al (2002) Neural correlates of visuospatial imagery. Behav Brain Res 131:163–168

    Article  PubMed  Google Scholar 

  • Suchan B, Yaguez L, Wunderlich G et al (2002) Hemispheric dissociation of visual-pattern processing and visual rotation. Behav Brain Res 136:533–544

    Article  PubMed  Google Scholar 

  • Taira M, Nose I, Inoue K, Tsutsui K (2001) Cortical areas related to attention to 3D surface structures based on shading: an fMRI study. Neuroimage 14:959–966

    Article  PubMed  CAS  Google Scholar 

  • Talairach JTP (1988) Co-planar stereotaxic atlas of the human brain 3-dimensional proportional system: an approach to cerebral imaging. Thieme, Stuttgart

    Google Scholar 

  • Ungerleider LG, Haxby JV (1994) ’What’ and ’where’ in the human brain. Curr Opin Neurobiol 4:157–165

    Article  PubMed  CAS  Google Scholar 

  • Vandenberghe R, Price C, Wise R, Josephs O, Frackowiak RS (1996) Functional anatomy of a common semantic system for words and pictures. Nature 383:254–256

    Article  PubMed  CAS  Google Scholar 

  • Van Essen DC, Anderson CH, Felleman DJ (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423

    Article  PubMed  CAS  Google Scholar 

  • Weiss PH, Marshall JC, Wunderlich G et al (2000) Neural consequences of acting in near versus far space: a physiological basis for clinical dissociations. Brain 123(Pt 12):2531–2541

    Article  PubMed  Google Scholar 

  • Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, Tzourio-Mazoyer N (2001) Neural correlates of simple and complex mental calculation. Neuroimage 13:314–327

    Article  PubMed  CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the Brain Imaging Center West and the Biomedizinisches Forschungszentrum of the Heinrich-Heine-University Düsseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger J. Seitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nickel, J., Seitz, R.J. Functional clusters in the human parietal cortex as revealed by an observer-independent meta-analysis of functional activation studies. Anat Embryol 210, 463–472 (2005). https://doi.org/10.1007/s00429-005-0037-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-005-0037-1

Keywords

Navigation