Skip to main content
Log in

Functional role of local GABAergic influences on the HPA axis

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neuronatomical and pharmacological studies have established GABA-mediated inhibition of the HPA axis at the level of the PVN. The origin of this innervation is a series of local hypothalamic and adjacent forebrain regions that project to stress-integrative hypophysiotropic CRH neurons. While a role in tonic inhibition of the stress axis is likely, this system of inhibitory loci is also capable of producing a dynamic braking capacity in the context of the neuroendocrine stress response. The latter function is mediated in large part by glutamatergic forebrain afferents that increase GABA release at the level of the PVN. In addition, this local GABA system can be inhibited by upstream GABAergic projection neurons, producing activation of the HPA axis via removal of GABAergic tone. This PVN projecting GABA network interfaces with a wide range of homeostatic mechanisms, and is capable of biochemical plasticity in response to chronic stress. Collectively, the elements of this system provide for exquisite control of neuroendocrine activation in the face of stressful stimuli, and loss of this regulatory capacity may underlie many stress-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3V:

Third ventricle

5-HT:

5-Hydroxytryptamine (serotonin)

IX:

Cranial nerve IX

X:

Cranial nerve X

A1:

Brainstem noradrenergic area, A1

A2:

Brainstem noradrenergic area, A2

ac:

Anterior commissure

aCSF:

Artificial cerebrospinal fluid

ACTH:

Adrenocorticotropic hormone

AHN:

Anterior hypothalamic nucleus

Arc:

Arcuate nucleus

B6:

Brainstem serotoninergic area, B6

B7:

Brainstem serotoninergic area, B7

B8:

Brainstem serotoninergic area, B8

BNST:

Bed nucleus of the stria terminalis

C1:

Brainstem adrenergic area, C1

C2:

Brainstem adrenergic area, C2

C3:

Brainstem adrenergic areas, C3

CeA:

Central amygdaloid nucleus

CG:

Central grey

CV:

Circumventricular organs

DMH:

Dorsomedial hypothalamic nucleus

f:

Fornix

GLP-1:

Glucagon-like peptide 1

Glu:

Glutamate

HDB:

Horizontal limb, diagonal band

ic:

Internal capsule

LC:

Locus coeruleus

LDTg:

Laterodorsal tegmental area

LH:

Lateral hypothalamic area

LPB:

Lateral parabrachial nucleus

LPO:

Lateral preoptic area

LS:

Lateral septal nucleus

MeA:

Medial amygdaloid nucleus

MnPO:

Median preoptic nucleus

mp:

Medial parvocellular PVN

MP:

Medial preoptic nucleus

MPA:

Medial preoptic area

mPFC:

Medial prefrontal cortex

mt:

Mammillothalamic tract

Musc:

Muscimol

NE:

Norepinephrine

NTS:

Nucleus of the solitary tract

OVLT:

Organum vasculosum, lamina terminalis

ot:

Optic tract

PBN:

Parabrachial Nucleus

PH:

Posterior hypothalamic area

pm:

Posterior magnocellular PVN

PMV:

Premammillary nucleus, ventral

PPn:

Pedunculopontine nucleus

PVN:

Paraventricular hypothalamic nucleus

PS:

Parastrial nucleus

Rt:

Reticular thalamic nucleus

SFO:

Subfornical organ

STh:

Subthalamic nucleus

VM:

Ventromedial hypothalamic nucleus

References

  • Bali B, Kovacs KJ (2003) GABAergic control of neuropeptide gene expression in the hypothalamic paraventricular nucleus. Eur J Neurosci 18:1518–1526

    Article  PubMed  Google Scholar 

  • Bali B, Erdelyi F, Szabo G, Kovacs KJ (2005) Visualization of stresss-responsive inhibitory circuits in GAD65-eGFP transgenic mice. Neurosci Lett 380:60–65. doi:10.1016/j.neulet.2005.01.014

    Article  PubMed  CAS  Google Scholar 

  • Blanchard DC, Canteras NS, Markham CM, Pentkowski NS, Blanchard RJ (2005) Lesions of structures showing FOS expression to cat presentation: effects on responsivity to a Cat, Cat odor, and nonpredator threat. Neurosci Biobehav Rev 29:1243–1253. doi:10.1016/j.neubiorev.2005.04.019

    Article  PubMed  Google Scholar 

  • Boudaba C, Szabo K, Tasker JG (1996) Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16:7151–7160

    PubMed  CAS  Google Scholar 

  • Bowers G, Cullinan WE, Herman JP (1998) Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci 18:5938–5947

    PubMed  CAS  Google Scholar 

  • Bradbury MJ, Strack AM, Dallman MF (1993) Lesions of the hippocampal efferent pathway (fimbria-fornix) do not alter sensitivity of adrenocorticotropin to feedback inhibition by corticosterone in rats. Neuroendocrinology 58:396–407. doi:10.1159/000126569

    Article  PubMed  CAS  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27:2025–2034. doi:10.1523/JNEUROSCI.4301-06.2007

    Article  PubMed  CAS  Google Scholar 

  • Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22:959–969

    PubMed  CAS  Google Scholar 

  • Cullinan WE (1998) Evidence for a PVN site of action for gamma aminobutyric acid in the regulatory control of the rat stress axis. Physiologist 41(5):379

    Google Scholar 

  • Cullinan WE (2000) GABA(A) receptor subunit expression within hypophysiotropic CRH neurons: a dual hybridization histochemical study. J Comp Neurol 419:344–351. doi:10.1002/(SICI)1096-9861(20000410)419:3<344::AID-CNE6>3.0.CO;2-Z

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Wolfe TJ (2000) Chronic stress regulates levels of mRNA transcripts encoding β subunits of the GABA(A) receptor in the rat stress axis. Brain Res 887:118–124. doi:10.1016/S0006-8993(00)03000-6

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1–20. doi:10.1002/cne.903320102

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995a) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neurosci 64:477–505. doi:10.1016/0306-4522(94)00355-9

    Article  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Helmreich DL, Watson SJ (1995b) A neuroanatomy of stress. In: Friedman MJ, Charney DS (eds) Neurobiological and clinical consequences of stress: from normal adaptation to PTSD. Raven Press, New York, pp 3–26

    Google Scholar 

  • Cullinan WE, Helmreich DL, Watson SJ (1996) Fos expression in forebrain afferents to the hypothalamic paraventricular nucleus following swim stress. J Comp Neurol 368:88–99. doi:10.1002/(SICI)1096-9861(19960422)368:1<88::AID-CNE6>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, Day TA (2002) Opposing roles for medial and central amygdala in the initiation of noradrenergic cell responses to a psychological stressor. Eur J Neurosci 15:1712–1718. doi:10.1046/j.1460-9568.2001.02011.x

    Article  PubMed  CAS  Google Scholar 

  • Dayas CV, Buller KM, Day TA (1999) Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur J Neurosci 11:2312–2322. doi:10.1046/j.1460-9568.1999.00645.x

    Article  PubMed  CAS  Google Scholar 

  • Decavel C, Van Den Pol AN (1990) GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol 302:1019–1037. doi:10.1002/cne.903020423

    Article  PubMed  CAS  Google Scholar 

  • Decavel C, Van Den Pol AN (1992) Converging GABA-and glutamate-immuno-reactive axons make synaptic contact with identified hypothalamic neurosecretory neurons. J Comp Neurol 316:104–116. doi:10.1002/cne.903160109

    Article  PubMed  CAS  Google Scholar 

  • Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847

    PubMed  CAS  Google Scholar 

  • Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38:192–246. doi:10.1016/S0165-0173(01)00079-0

    Article  PubMed  CAS  Google Scholar 

  • Dunn JD (1987) Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis. Brain Res 407:327–331. doi:10.1016/0006-8993(87)91111-5

    Article  PubMed  CAS  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Tobin AJ, Houser CR (1993) Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods. J Comp Neurol 331:339–362. doi:10.1002/cne.903310305

    Article  PubMed  CAS  Google Scholar 

  • Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci 14:1834–1855

    PubMed  CAS  Google Scholar 

  • Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP (2003) The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci 18:2357–2364. doi:10.1046/j.1460-9568.2003.02932.x

    Article  PubMed  Google Scholar 

  • Henke PG (1984) The bed nucleus of the stria terminalis and immobilization-stress: unit activity, escape behaviour, and gastric pathology in rats. Behav Brain Res 11:35–45. doi:10.1016/0166-4328(84)90006-8

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20:78–84. doi:10.1016/S0166-2236(96)10069-2

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Mueller NK (2006) Role of the ventral subiculum in stress integration. Behav Brain Res 174:215–224. doi:10.1016/j.bbr.2006.05.035

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H et al (1989) Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J Neurosci 9:3072–3082

    PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE, Young EA, Akil H, Watson SJ (1992) Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression. Brain Res 592:228–238. doi:10.1016/0006-8993(92)91680-D

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6:433–442. doi:10.1111/j.1365-2826.1994.tb00604.x

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ (1995) Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol 7:475–482. doi:10.1111/j.1365-2826.1995.tb00784.x

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Cullinan WE, Ziegler DR, Tasker JG (2002) Role of the paraventricular nucleus microenvironment in stress integration. Eur J Neurosci 16:381–385. doi:10.1046/j.1460-9568.2002.02133.x

    Article  PubMed  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180. doi:10.1016/j.yfrne.2003.07.001

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45. doi:10.1196/annals.1296.004

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201–1213. doi:10.1016/j.pnpbp.2005.08.006

    Article  PubMed  CAS  Google Scholar 

  • Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the infralimbic cortex of the rat. J Comp Neurol 308:249–276. doi:10.1002/cne.903080210

    Article  PubMed  CAS  Google Scholar 

  • Jones MT, Hillhouse E, Burden J (1976) Effects of various neurotransmitters on the secretion of corticotrophin-releasing hormone from the rat hypothalamus in vitro: a model of the neurotransmitters involved. J Endocrinol 69:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kohler C (1990) Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde Phaseolus vulgaris leukoagglutinin (PHA-L) tracing method. Prog Brain Res 83:59–69. doi:10.1016/S0079-6123(08)61241-8

    Article  PubMed  CAS  Google Scholar 

  • Li CI, Maglinao TL, Takahashi LK (2004) Medial amygdala modulation of predator odor-induced unconditioned fear in the rat. Behav Neurosci 118:324–332. doi:10.1037/0735-7044.118.2.324

    Article  PubMed  Google Scholar 

  • Makara GB, Stark E (1974) Effect of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology 16:178–190. doi:10.1159/000122564

    Article  PubMed  CAS  Google Scholar 

  • Miklos IH, Kovacs KJ (2002) GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113:581–592. doi:10.1016/S0306-4522(02)00147-1

    Article  PubMed  CAS  Google Scholar 

  • Muller M, Fendt M (2006) Temporary inactivation of the medial and basolateral amygdala differentially affects TMT-induced fear behavior in rats. Behav Brain Res 167:57–62. doi:10.1016/j.bbr.2005.08.016

    Article  PubMed  CAS  Google Scholar 

  • Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 38:247–289. doi:10.1016/S0165-0173(01)00080-7

    Article  PubMed  CAS  Google Scholar 

  • Prewitt CM, Herman JP (1998) Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. J Chem Neuroanat 15:173–185. doi:10.1016/S0891-0618(98)00045-3

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Arias CM, Sawchenko PE (2006) Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26:12967–12976. doi:10.1523/JNEUROSCI.4297-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1997a) Chemoarchitecture of the rat lateral septal nucleus. Brain Res Brain Res Rev 24:91–113. doi:10.1016/S0165-0173(97)00008-8

    Article  PubMed  CAS  Google Scholar 

  • Risold PY, Swanson LW (1997b) Connections of the rat lateral septal complex. Brain Res Brain Res Rev 24:115–195. doi:10.1016/S0165-0173(97)00009-X

    Article  PubMed  CAS  Google Scholar 

  • Roland BL, Sawchenko PE (1993) Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 332:123–143. doi:10.1002/cne.903320109

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1984) Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci USA 81:6174–6177. doi:10.1073/pnas.81.19.6174

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290:213–242. doi:10.1002/cne.902900205

    Article  PubMed  CAS  Google Scholar 

  • Spencer SJ, Buller KM, Day TA (2005) Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol 481:363–376. doi:10.1002/cne.20376

    Article  PubMed  Google Scholar 

  • Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331. doi:10.1016/S0166-2236(98)01265-X

    Article  PubMed  CAS  Google Scholar 

  • Wilson MM, Greer SE, Greer MA, Roberts L (1980) Hippocampal inhibition of pituitary-adrenocortical function in female rats. Brain Res 197:433–441. doi:10.1016/0006-8993(80)91128-2

    Article  PubMed  CAS  Google Scholar 

  • Ziegler DR, Cullinan WE, Herman JP (2002) Distribution of vesicular glutamate transporter mRNA in rat hypothalamus. J Comp Neurol 448:217–229

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Cullinan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullinan, W.E., Ziegler, D.R. & Herman, J.P. Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213, 63–72 (2008). https://doi.org/10.1007/s00429-008-0192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-008-0192-2

Keywords

Navigation