Skip to main content
Log in

The red nucleus and the rubrospinal projection in the mouse

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8–T1 (hand motor neurons) and L5–L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  PubMed  CAS  Google Scholar 

  • Antal M, Sholomenko GN, Moschovakis AK, Storm-Mathisen J, Heizmann CW, Hunziker W (1992) The termination pattern and postsynaptic targets of rubrospinal fibers in the rat spinal cord: a light and electron microscopic study. J Comp Neurol 325:22–37

    Article  PubMed  CAS  Google Scholar 

  • Brown LT (1974) Rubrospinal projections in the rat. J Comp Neurol 154:169–188

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Shumsky JS, Sabol MA, Kushner RA, Strittmatter S, Hamers FP, Lee DH, Rabacchi SA, Murray M (2008) Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat. Neurorehabil Neural Repair 22:262–278

    Article  PubMed  CAS  Google Scholar 

  • Chen A, Wang H, Zhang J, Wu X, Liao J, Li H, Cai W, Luo X, Ju G (2008) BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 117:451–456

    Article  PubMed  Google Scholar 

  • Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Fujito Y, Aoki M (1995) Monosynaptic rubrospinal projections to distal forelimb motoneurons in the cat. Exp Brain Res 105:181–190

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Hansma DI, Houk JC, Robinson FR (1984) A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Res 298:235–241

    Article  PubMed  CAS  Google Scholar 

  • Guízar-Sahagún G, Ibarra A, Espitia A, Martínez A, Madrazo I, Franco-Bourland RE (2005) Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 130:639–649

    Article  PubMed  Google Scholar 

  • Harvey PJ, Grochmal J, Tetzlaff W, Gordon T, Bennett DJ (2005) An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury. Eur J Neurosci 22:3025–3035

    Article  PubMed  Google Scholar 

  • Hill E, Kalloniatis M, Tan SS (2000) Glutamate, GABA and precursor amino acids in adult mouse neocortex: cellular diversity revealed by quantitative immunocytochemistry. Cereb Cortex 10:1132–1142

    Article  PubMed  CAS  Google Scholar 

  • Holstege G (1987) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Blok BF, Ralston DD (1988) Anatomical evidence for red nucleus projections to motoneuronal cell groups in the spinal cord of the monkey. Neurosci Lett 95:97–101

    Article  PubMed  CAS  Google Scholar 

  • Hongo T, Jankowska E, Lundberg A (1969) The rubrospinal tract. I. Effects on alpha-motoneurones innervating hindlimb muscles in cats. Exp Brain Res 7(4):344–364

    PubMed  CAS  Google Scholar 

  • Huber GC, Crosby EC, Woodburne RT, Gililan LA, Brown LO, Tamthai B (1943) The mammalian midbrain and isthmus regions. Part I: the nuclear pattern. J Comp Neurol 78:129–534

    Article  Google Scholar 

  • Jefferson SC, Tester NJ, Howland DR (2011) Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 31:5710–5720

    Article  PubMed  CAS  Google Scholar 

  • Küchler M, Fouad K, Weinmann O, Schwab ME, Raineteau O (2002) Red nucleus projections to distinct motor neuron pools in the rat spinal cord. J Comp Neurol 448(4):349–359

    Article  PubMed  Google Scholar 

  • Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  PubMed  CAS  Google Scholar 

  • Liang HZ, Paxinos G, Watson C (2011) Projections from the brain to the spinal cord in the mouse. Brain struct funct 215:159–186

    Article  PubMed  Google Scholar 

  • McCurdy ML, Hansma DI, Houk JC, Gibson AR (1987) Selective projections from the cat red nucleus to digit motor neurons. J Comp Neurol 265:367–379

    Article  PubMed  CAS  Google Scholar 

  • Murray HM, Haines DE, Cote I (1976) The rubrospinal tract of the tree shrew (Tupaia glis). Brain Res 116:317–322

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord—a comparative study of 22 mammals. J Comp Neurol 277:53–79

    Article  PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R (1966) Functional organization of descending supraspinal fibre systems to the spinal cord. Anatomical observations and physiological correlations. Ergeb Anat Entwicklungsgesch 39:3–48

    PubMed  CAS  Google Scholar 

  • Nyberg-Hansen R, Brodal A (1964) Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J Anat 98:235–253

    PubMed  CAS  Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108

    Article  PubMed  CAS  Google Scholar 

  • Puelles E, Martínez-de-la-Torre M, Watson C, Puelles L (2011) Midbrain. In: Watson C, Paxinos G, Puelles L (eds) The mouse nervous system. Elsevier Academic Press, San Diego

    Google Scholar 

  • Ralston DD, Milroy AM, Holstege G (1988) Ultrastructural evidence for direct monosynaptic rubrospinal connections to motoneurons in Macaca mulatta. Neurosci Lett 95:102–106

    Article  PubMed  CAS  Google Scholar 

  • Shapovalov AI, Karamjan OA, Kurchavyi GG, Repina ZA (1971) Synaptic actions evoked from the red nucleus on the spinal alpha-motoneurons in the rhesus monkey. Brain Res 32:325–348

    Article  PubMed  CAS  Google Scholar 

  • ten Donkelaar HJ, de Boer-van Huizen R, Schouten FT, Eggen SJ (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neuroscience 6:2297–2312

    Article  PubMed  CAS  Google Scholar 

  • Wannier-Morino P, Schmidlin E, Freund P, Belhaj-Saif A, Bloch J, Mir A, Schwab ME, Rouiller EM, Wannier T (2008) Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: effects of an antibody treatment neutralizing Nogo-A. Brain Res 1217:96–109

    Article  PubMed  CAS  Google Scholar 

  • Warner G, Watson CR (1972) The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula). Brain Res 41:180–183

    Article  PubMed  CAS  Google Scholar 

  • Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The spinal cord. Elsevier Academic Press, San Diego, pp 308–379

    Chapter  Google Scholar 

  • Wild JM, Cabot JB, Cohen DH, Karten HJ (1979) Origin, course and terminations of the rubrospinal tract in the pigeon (Columba livia). J Comp Neurol 187:639–654

    Article  PubMed  CAS  Google Scholar 

  • Yasui Y, Yokota S, Ono K, Tsumori T (2001) Projections from the red nucleus to the parvicellular reticular formation and the cervical spinal cord in the rat with special reference to innervation by branching axons. Brain Res 923:187–192

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NHMRC Australian fellowship grant to Professor George Paxinos (466028). We are indebted to the creators of Internet-based collections of brain anatomy whose sections we have used in the preparation of the present paper. It is the Allen Institute for Brain Science (Lein et al. 2007 and the Allen Brain Atlas [Internet], 2008—http://mouse.brain-map.org/welcome.do).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Watson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Paxinos, G. & Watson, C. The red nucleus and the rubrospinal projection in the mouse. Brain Struct Funct 217, 221–232 (2012). https://doi.org/10.1007/s00429-011-0348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0348-3

Keywords

Navigation