Skip to main content
Log in

Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The anatomy and functional role of the inferior fronto-occipital fascicle (IFOF) remain poorly known. We accurately analyze its course and the anatomical distribution of its frontal terminations. We propose a classification of the IFOF in different subcomponents. Ten hemispheres (5 left, 5 right) were dissected with Klingler’s technique. In addition to the IFOF dissection, we performed a 4-T diffusion tensor imaging study on a single healthy subject. We identified two layers of IFOF. The first one is superficial and antero-superiorly directed, terminating in the inferior frontal gyrus. The second is deeper and consists of three portions: posterior, middle and anterior. The posterior component terminates in the middle frontal gyrus (MFG) and dorso-lateral prefrontal cortex. The middle component terminates in the MFG and lateral orbito-frontal cortex. The anterior one is directed to the orbito-frontal cortex and frontal pole. In vivo tractography study confirmed these anatomical findings. We suggest that the distribution of IFOF fibers within the frontal lobe corresponds to a fine functional segmentation. IFOF can be considered as a “multi-function” bundle, with each anatomical subcomponent subserving different brain processing. The superficial layer and the posterior component of the deep layer, which connects the occipital extrastriate, temporo-basal and inferior frontal cortices, might subserve semantic processing. The middle component of the deep layer could play a role in a multimodal sensory–motor integration. Finally, the anterior component of the deep layer might be involved in emotional and behavioral aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aralamask A, Ulmer JL, Kocak M, Salvan CV, Hillis AE, Youssen DM (2006) Association, commissural, and projection pathways and their functional deficit reported in literature. J Comput Assist Tomogr 30:695–715

    Article  Google Scholar 

  • Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Ann Rev Neurosci 25:151–188

    Article  PubMed  CAS  Google Scholar 

  • Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105

    Google Scholar 

  • Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 pet and fMRI studies. J Cogn Neurosci 12:1–47

    Article  PubMed  CAS  Google Scholar 

  • Catani M, Ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    Article  PubMed  Google Scholar 

  • Catani M, Mesulam M (2008) The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:953–961

    Article  PubMed  Google Scholar 

  • Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  • Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    Article  PubMed  Google Scholar 

  • Curran EJ (1909) A new association fiber tract in the cerebrum. J Comp Neurol 19:645–656

    Google Scholar 

  • Dejerine JJ (1895) Anatomie des Centres Nerveux. Rueff et Cie, Paris

    Google Scholar 

  • Dorrichi F, Thiebaut De Schotten M, Tomaiuolo F, Bartolomeo P (2008) White matter (dis)connections and gray matter (dys)functions in visual neglect: gaining insights into the brain networks of spatial awareness. Cortex 44:983–985

    Article  Google Scholar 

  • Duffau H (2008) The anatomo-functional connectivity of language revisited: new insights provided by electrostimulation and tractography. Neuropsychologia 46:927–934

    Article  PubMed  Google Scholar 

  • Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L (2005) New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain 128:797–810

    Article  PubMed  Google Scholar 

  • Epelbaum S, Pinel P, Gaillard R, Delmaire C, Perrin M, Dupont S, Dehaene S, Cohen L (2008) Pure alexia as a disconnection syndrome. New diffusion imaging evidence for an old concept. Cortex 44:962–974

    Article  PubMed  Google Scholar 

  • Ernst M, Bolla K, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS, London ED (2002) Decision-making in a risk-taking task: a pet study. Neuropsychopharmacology 26:682–691

    Article  PubMed  Google Scholar 

  • Fox CJ, Iara G, Barton JJS (2008) Disconnection in prosopagnosia and face processing. Cortex 44:996–1009

    Article  PubMed  Google Scholar 

  • Garibotto V, Scifo P, Gorini A, Alonso CR, Brambati S, Bellodi L, Perani D (2009) Disorganization of anatomical connectivity in obsessive compulsive disorder: a multi-parameter diffusion tensor imaging study in a subpopulation of patients. Neurobiol Dis 37:468–476

    Article  PubMed  Google Scholar 

  • Heimer I (1995) The human brain and spinal cord: functional neuroanatomy and dissection guide, 2nd edn. Springer, New York

    Google Scholar 

  • Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS (2004) Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage 21:616–622

    Article  PubMed  Google Scholar 

  • Jacobson S, Kelleher I, Harley M, Murtagh A, Clarke M, Blanchard M, Connolly C, O’hanlon E, Garavan H, Cannon M (2010) Structural and functional brain correlates of subclinical psychotic symptoms in 11–13 year old schoolchildren. Neuroimage 49:1875–1885

    Article  PubMed  Google Scholar 

  • Klingler J (1935) Erleichterung der makroskopischen Präparation des Gehirns 78 durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  • Kvickström P, Eriksson B, Van Westen D, Lätt J, Elfgren C, Nilsson C (2011) Selective frontal neurodegeneration of the inferior fronto-occipital fasciculus in progressive supranuclear palsy (PSP) demonstrated by diffusion tensor tractography. BMC Neurol 11:13

    Article  PubMed  Google Scholar 

  • Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage 39:62–79

    Article  PubMed  Google Scholar 

  • Lawrence NS, Jollant F, O’daly O, Zelaya F, Phillips ML (2009) Distinct roles of prefrontal cortical subregions in the Iowa gambling task. Cereb Cortex 19:1134–1143

    Article  PubMed  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas cerebri humani. The inner structure of the brain demonstrated on the basis of macroscopical preparations. Little Brown, Boston

  • Martino J, Brogna C, Robles SG, Vergani F, Duffau H (2009) Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 46:691–699

    Article  PubMed  Google Scholar 

  • Martino J, Vergani F, Robles SG, Duffau H (2010) New insights into the anatomic dissection of the temporal stem with special emphasis on the inferior fronto-occipital fasciculus: implications in surgical approach to left mesiotemporal and temporoinsular structures. Neurosurgery 66:4–12

    Article  PubMed  Google Scholar 

  • Mori S, Wakana S, Nagae-Poetscher LM, Van Zijl PCM (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Petrides M, Pandya DN (2006) Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. J Comp Neurol 498:227–251

    Article  PubMed  CAS  Google Scholar 

  • Philippi CL, Mehta S, Grabowski T, Adolphs R, Rudrauf D (2009) Damage to association fiber tracts impairs recognition of the facial expression of emotion. J Neurosci 29:15089–15099

    Article  PubMed  CAS  Google Scholar 

  • Plaza M, Gatignol P, Cohen H, Berger B, Duffau H (2008) A discrete area within the left dorsolateral prefrontal cortex involved in visual–verbal incongruence judgment. Cereb Cortex 18:1253–1259

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153:146–157

    Article  PubMed  Google Scholar 

  • Rollins NK, Vachha B, Srinivasan P, Chia J, Pickering J, Hughes CW, Gimi B (2009) Simple developmental dyslexia in children: alterations in diffusion-tensor metrics of white matter tracts at 3 T. Radiology 251:882–891

    Article  PubMed  Google Scholar 

  • Rudrauff D, Mehta S, Grabowski T (2008) Disconnection’s renaissance takes shape: format incorporation in group-level lesion studies. Cortex 44:1084–1096

    Article  Google Scholar 

  • Rykhlevskaia E, Uddin LQ, Kondos L, Menon V (2009) Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Front Hum Neurosci 3:51

    Article  PubMed  Google Scholar 

  • Sakai KL (2005) Language acquisition and brain development. Science 310:815–819

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

  • Schmahmann JD, Pandya DN (2007) The complex history of the fronto-occipital fasciculus. J Hist Neurosci 16:362–377

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    Article  PubMed  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy R, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:208–219

    Article  Google Scholar 

  • Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30:1414–1432

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our heartfelt thanks to cadaver donors, who gave their own bodies to the University of Montpellier School of Medicine for medical research. We also want to thank Professor François Canovas for his administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Duffau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarubbo, S., De Benedictis, A., Maldonado, I.L. et al. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct 218, 21–37 (2013). https://doi.org/10.1007/s00429-011-0372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0372-3

Keywords

Navigation