Skip to main content

Advertisement

Log in

Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Lateralization of cortical functions such as speech dominance, handedness and processing of vestibular information are present not only in humans but also in ontogenetic older species, e.g. rats. In human functional imaging studies, the processing of vestibular information was found to be correlated with the hemispherical dominance as determined by the handedness. It is located mainly within the right hemisphere in right handers and within the left hemisphere in left handers. Since dominance of vestibular processing is unknown in animals, our aim was to study the lateralization of cortical processing in a functional imaging study applying small-animal positron emission tomography (microPET) and galvanic vestibular stimulation in an in vivo rat model. The cortical and subcortical network processing vestibular information could be demonstrated and correlated with data from other animal studies. By calculating a lateralization index as well as flipped region of interest analyses, we found that the vestibular processing in rats follows a strong left hemispheric dominance independent from the “handedness” of the animals. These findings support the idea of an early hemispheric specialization of vestibular cortical functions in ontogenetic older species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM (2003) Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18:423–438

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Grusser OJ, Guldin WO (1993) Corticofugal projections to the vestibular nuclei in squirrel monkeys: further evidence of multiple cortical vestibular fields. J Comp Neurol 332:89–104

    Article  CAS  PubMed  Google Scholar 

  • Akbarian S, Grusser OJ, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339:421–437

    Article  CAS  PubMed  Google Scholar 

  • Angelaki DE, Gu Y, Deangelis GC (2010) Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J Physiol 589:825–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). J Neurophysiol 85:886–899

    CAS  PubMed  Google Scholar 

  • Best C, Stefan H, Hopfengaertner R, Dieterich M (2010) Effects of electrical stimulation in vestibular cortex areas in humans. J Neurol Sci 290:157–162

    Article  PubMed  Google Scholar 

  • Biddle FG, Eales BA (1996) The degree of lateralization of paw usage (handedness) in the mouse is defined by three major phenotypes. Behav Genet 26:391–406

    Article  CAS  PubMed  Google Scholar 

  • Biddle FG, Coffaro CM, Ziehr JE, Eales BA (1993) Genetic variation in paw preference (handedness) in the mouse. Genome 36:935–943

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871:293–312

    Article  CAS  PubMed  Google Scholar 

  • Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry TA et al (1998) Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44:120–125

    Article  CAS  PubMed  Google Scholar 

  • Buitrago S, Martin TE, Tetens-Woodring J, Belicha-Villanueva A, Wilding GE (2008) Safety and efficacy of various combinations of injectable anesthetics in BALB/c mice. J Am Assoc Lab Anim Sci 47:11–17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Büttner U, Büttner UW (1978) Parietal cortex (2v) neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153:392–397

    Article  PubMed  Google Scholar 

  • Büttner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628

    PubMed  Google Scholar 

  • Casteels C, Vermaelen P, Nuyts J, Van Der Linden A, Baekelandt V, Mortelmans L et al (2006) Construction and evaluation of multitracer small-animal PET probabilistic atlases for voxel-based functional mapping of the rat brain. J Nucl Med 47:1858–1866

    PubMed  Google Scholar 

  • Chen A, DeAngelis GC, Angelaki DE (2010) Macaque parieto-insular vestibular cortex: responses to self-motion and optic flow. J Neurosci 30:3022–3042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collins RL (1968) On the inheritance of handedness. I. Laterality in inbred mice. J Hered 59:9–12

    CAS  PubMed  Google Scholar 

  • Collins RL (1975) When left-handed mice live in right-handed worlds. Science 187:181–184

    Article  CAS  PubMed  Google Scholar 

  • Corballis MC (2008) Of mice and men—and lopsided birds. Cortex 44:3–7

    Article  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1990) Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248:1556–1559

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402

    CAS  PubMed  Google Scholar 

  • Deblaere K, Boon PA, Vandemaele P, Tieleman A, Vonck K, Vingerhoets G et al (2004) MRI language dominance assessment in epilepsy patients at 1.0 T: region of interest analysis and comparison with intracarotid amytal testing. Neuroradiology 46:413–420

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Bartenstein P et al (2003) Dominance for vestibular cortical function in the non-dominant hemisphere. Cereb Cortex 13:994–1007

    Article  CAS  PubMed  Google Scholar 

  • Dieterich M, Bense S, Stephan T, Brandt T, Schwaiger M, Bartenstein P (2005) Medial vestibular nucleus lesions in Wallenberg’s syndrome cause decreased activity of the contralateral vestibular cortex. Ann N Y Acad Sci 1039:368–383

    Article  PubMed  Google Scholar 

  • Ebata S, Sugiuchi Y, Izawa Y, Shinomiya K, Shinoda Y (2004) Vestibular projection to the periarcuate cortex in the monkey. Neurosci Res 49:55–68

    Article  CAS  PubMed  Google Scholar 

  • Emri M, Kisely M, Lengyel Z, Balkay L, Marian T, Miko L et al (2003) Cortical projection of peripheral vestibular signaling. J Neurophysiol 89:2639–2646

    Article  PubMed  Google Scholar 

  • Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T et al (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. Neuroimage 17:1384–1393

    Article  PubMed  Google Scholar 

  • Fredrickson JM, Scheid P, Figge U, Kornhuber HH (1966) Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp Brain Res 2:318–327

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Smith CE, Fernandez C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256

    CAS  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430:537–557

    PubMed Central  PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990b) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430:559–583

    PubMed Central  PubMed  Google Scholar 

  • Guldin WO, Grüsser OJ (1996) The anatomy of the vestibular cortices of primates. In: Collard M, Jeannerod M, Christen Y (eds) Le cortex vestibulaire. Ipsen, Paris, pp 17–26

    Google Scholar 

  • Guldin WO, Grüsser OJ (1998) Is there a vestibular cortex? Trends Neurosci 21:254–259

    Article  CAS  PubMed  Google Scholar 

  • Guldin WO, Akbarian S, Grusser OJ (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 326:375–401

    Article  CAS  PubMed  Google Scholar 

  • Guldin WO, Mirring S, Grusser OJ (1993) Connections from the neocortex to the vestibular brain stem nuclei in the common marmoset. NeuroReport 5:113–116

    Article  CAS  PubMed  Google Scholar 

  • Gutwinski S, Loscher A, Mahler L, Kalbitzer J, Heinz A, Bermpohl F (2011) Understanding left-handedness. Dtsch Arztebl Int 108:849–853

    PubMed Central  PubMed  Google Scholar 

  • Janzen J, Schlindwein P, Bense S, Bauermann T, Vucurevic G, Stoeter P et al (2008) Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system. Neuroimage 42:1508–1518

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J, Lutzenberger W, Preissl H, Ackermann H, Birbaumer N (2000) Right-hemisphere dominance for the processing of sound-source lateralization. J Neurosci 20:6631–6639

    CAS  PubMed  Google Scholar 

  • Kleine JF, Grüsser OJ (1996) Responses of rat primary afferent vestibular neurons to galvanic polarization of the labyrinth. Ann N Y Acad Sci 781:639–641

    Article  CAS  PubMed  Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177:3–17

    Article  CAS  PubMed  Google Scholar 

  • Lobel E, Kleine JF, Bihan DL, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80:2699–2709

    CAS  PubMed  Google Scholar 

  • Lobel E, Kleine JF, Leroy-Willig A, Van de Moortele PF, Le Bihan D, Grusser OJ et al (1999) Cortical areas activated by bilateral galvanic vestibular stimulation. Ann N Y Acad Sci 871:313–323

    Article  CAS  PubMed  Google Scholar 

  • Lopez C, Blanke O (2011) The thalamocortical vestibular system in animals and humans. Brain Res Rev 67:119–146

    Article  PubMed  Google Scholar 

  • Maciewicz R, Phipps BS, Bry J, Highstein SM (1982) The vestibulothalamic pathway: contribution of the ascending tract of Deiters. Brain Res 252:1–11

    Article  CAS  PubMed  Google Scholar 

  • McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic P (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 6:600–611

    Article  CAS  PubMed  Google Scholar 

  • Muri RM, Iba-Zizen MT, Derosier C, Cabanis EA, Pierrot-Deseilligny C (1996) Location of the human posterior eye field with functional magnetic resonance imaging. J Neurol Neurosurg Psychiatry 60:445–448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ödkvist LM, Schwarz DW, Fredrickson JM, Hassler R (1974) Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (Saimiri sciureus). Exp Brain Res 21:97–105

    Article  PubMed  Google Scholar 

  • Pardo JV, Fox PT, Raichle ME (1991) Localization of a human system for sustained attention by positron emission tomography. Nature 349:61–64

    Article  CAS  PubMed  Google Scholar 

  • Pence S (2002) Paw preference in rats. J Basic Clin Physiol Pharmacol 13:41–49

    PubMed  Google Scholar 

  • Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 90:873–877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross DA, Glick SD, Meibach RC (1981) Sexually dimorphic brain and behavioral asymmetries in the neonatal rat. Proc Natl Acad Sci USA 78:1958–1961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaafsma SM, Riedstra BJ, Pfannkuche KA, Bouma A, Groothuis TG (2009) Epigenesis of behavioural lateralization in humans and other animals. Philos Trans R Soc Lond B Biol Sci 364:915–927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schiffer WK, Mirrione MM, Dewey SL (2007) Optimizing experimental protocols for quantitative behavioral imaging with 18F-FDG in rodents. J Nucl Med 48:277–287

    CAS  PubMed  Google Scholar 

  • Schlosser HG, Guldin WO (2009) Evidence for vestibular processing in the caudal fastigial nucleus using vector addition. Med Sci Monit 15:69–76

    Google Scholar 

  • Schlosser HG, Guldin WO, Grüsser OJ (2001) Tuning in caudal fastigial nucleus units during natural and galvanic labyrinth stimulation. NeuroReport 12:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Schmidt L, Artinger F, Stumpf O, Kerkhoff G (2013) Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers. Neuropsychologia 51:893–899

    Article  PubMed  Google Scholar 

  • Shinder ME, Taube JS (2010) Differentiating ascending vestibular pathways to the cortex involved in spatial cognition. J Vestib Res 20:3–23

    PubMed  Google Scholar 

  • Sugiuchi Y, Izawa Y, Ebata S, Shinoda Y (2005) Vestibular cortical area in the periarcuate cortex: its afferent and efferent projections. Ann N Y Acad Sci 1039:111–123

    Article  PubMed  Google Scholar 

  • Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T et al (2001) Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Brain Res Cogn Brain Res 12:441–449

    Article  CAS  PubMed  Google Scholar 

  • Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR et al (1996) Positron emission tomography study of voluntary saccadic eye movements and spatial working memory. J Neurophysiol 75:454–468

    CAS  PubMed  Google Scholar 

  • Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ et al (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31:251–256

    Article  CAS  PubMed  Google Scholar 

  • Wilke M, Schmithorst VJ (2006) A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage 33:522–530

    Article  PubMed  Google Scholar 

  • zu Eulenburg P, Caspers S, Roski C, Eickhoff SB (2012) Meta-analytical definition and functional connectivity of the human vestibular cortex. Neuroimage 60:162–169

    Article  CAS  PubMed  Google Scholar 

  • Zwergal A, Buttner-Ennever J, Brandt T, Strupp M (2008) An ipsilateral vestibulothalamic tract adjacent to the medial lemniscus in humans. Brain 131:2928–2935

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Benson and Mrs. Ogston for critically reading and native speaking editing the manuscript. This study was supported by the ‘Stiftung Rheinland-Pfalz für Innovation’ (to M.D.), MAIFOR (to C.B.), Röttger-Stiftung (to S.R.) and Hoffmann-Klose-Stiftung (to S.R.). The study was financially supported by four pure scientific grants: the ‘Stiftung Rheinland-Pfalz for Innovation’, MAIFOR, Röttger-Stiftung and Hoffmann-Klose-Stiftung. None of the sponsors had any influence in the study design, the collection, analysis and interpretation of data, the writing of the manuscript and in the decision to submit the article for publication.

Conflict of interest

None of the authors has any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Best.

Additional information

C. Best and E. Lange contributed equally.

S. Reuss and M. Dieterich joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, C., Lange, E., Buchholz, HG. et al. Left hemispheric dominance of vestibular processing indicates lateralization of cortical functions in rats. Brain Struct Funct 219, 2141–2158 (2014). https://doi.org/10.1007/s00429-013-0628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0628-1

Keywords

Navigation