Skip to main content
Log in

Activity-dependent structural plasticity of Purkinje cell spines in cerebellar vermis and hemisphere

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The environmental enrichment (EE) paradigm is widely used to study experience-dependent brain plasticity. In spite of a long history of research, the EE influence on neuronal morphology has not yet been described in relation to the different regions of the cerebellum. Thus, aim of the present study was to characterize the EE effects on density and size of dendritic spines of Purkinje cell proximal and distal compartments in cerebellar vermian and hemispherical regions. Male Wistar rats were housed in an enriched or standard environment for 3.5 months from the 21st post-natal day onwards. The morphological features of Purkinje cell spines were visualized on calbindin immunofluorescence-stained cerebellar vermian and hemispherical sections. Density, area, length and head diameter of spines were manually (ImageJ) or automatically (Imaris) quantified. Results demonstrated that the Purkinje cell spine density was higher in enriched rats than in controls on both proximal and distal dendrite compartments in the hemisphere, while it increased only on distal compartment in the vermis. As for spine size, a significant increase of area, length and head diameter was found in the distal dendrites in both vermis and hemisphere. Thus, the exposure to a complex environment enhances synapse formation and plasticity either in the vermis involved in balance and locomotion and in the hemisphere involved in complex motor adaptations and acquisition of new motor strategies. These data highlight the importance of cerebellar activity-dependent structural plasticity underling the EE-related high-level performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Angelucci F, De Bartolo P, Gelfo F, Foti F, Cutuli D, Bossù P, Caltagirone C, Petrosini L (2009) Increased concentrations of nerve growth factor and brain-derived neurotrophic factor in the rat cerebellum after exposure to environmental enrichment. Cerebellum 8:499–506

    Article  CAS  PubMed  Google Scholar 

  • Arai JA, Feig LA (2011) Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull 85:30–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Bae J, Sung BH, Cho IH, Kim S-M, Song WK (2012) NESH regulates dendritic spine morphology and synapse formation. PLoS One 7:e34677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA 87:5568–5572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386

    Article  CAS  PubMed  Google Scholar 

  • Bravin M, Morando L, Vercelli A, Rossi F, Strata P (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci USA 96:1704–2709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bundman MC, Gall CM (1994) Ultrastructural plasticity of the dentate gyrus granule cells following recurrent limbic seizures: II. Alterations in somatic synapses. Hippocampus 4:611–622

    Article  CAS  PubMed  Google Scholar 

  • Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Mancini L, Angelucci F, Petrosini L (2014) Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression. Front Behav Neurosci 8:195

  • Chambers WW, Sprague JM (1955) Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J Comp Neurol 103:105–129

    Article  CAS  PubMed  Google Scholar 

  • Cutuli D, Rossi S, Burello L, Laricchiuta D, De Chiara V, Foti F, De Bartolo P, Musella A, Gelfo F, Centonze D, Petrosini L (2011) Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin. Neurobiol Dis 42:9–20

    Article  PubMed  Google Scholar 

  • De Bartolo P, Leggio MG, Mandolesi L, Foti F, Gelfo F, Ferlazzo F, Petrosini L (2008) Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility. Neuroscience 154:444–453

    Article  PubMed  Google Scholar 

  • De Bartolo P, Gelfo F, Burello L, De Giorgio A, Petrosini L, Granato A (2011) Plastic changes in striatal fast-spiking interneurons following hemicerebellectomy and environmental enrichment. Cerebellum 10:624–632

    Article  PubMed  Google Scholar 

  • Federmeier KD, Kleim JA, Greenough WT (2002) Learning-induced multiple synapse formation in rat cerebellar cortex. Neurosci Lett 332:180–184

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Kulisevski J, Vazquez J, Gonzalez G, Pineda M (1988) Purkinje cells in degenerative disease of the cerebellum and its connections: a Golgi study. Clin Neuropathol 7:22–28

    CAS  PubMed  Google Scholar 

  • Ferrer I, Genís D, Dávalos A, Bernadó L, Sant F, Serrano T (1994) The Purkinje cell in olivopontocerebellar atrophy. A Golgi and immunocytochemical study. Neuropathol Appl Neurobiol 20:38–46

    Article  CAS  PubMed  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39:29–54

    Article  PubMed  Google Scholar 

  • Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D (2011) Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 6:e16666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foti F, Laricchiuta D, Cutuli D, De Bartolo P, Gelfo F, Angelucci F, Petrosini L (2011) Exposure to an enriched environment accelerates recovery from cerebellar lesion. Cerebellum 10:104–119

    Article  PubMed  Google Scholar 

  • Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483:92–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelfo F, De Bartolo P, Giovine A, Petrosini L, Leggio MG (2009) Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol Learn Mem 91:353–365

    Article  PubMed  Google Scholar 

  • González-Burgos I, González-Tapia D, Zamora DA, Feria-Velasco A, Beas-Zárate C (2011) Guided motor training induces dendritic spine plastic changes in adult rat cerebellar Purkinje cells. Neurosci Lett 491:216–220

    Article  PubMed  Google Scholar 

  • González-Ramírez MM, Velázquez-Zamora DA, Olvera-Cortés ME, González-Burgos I (2014) Changes in the plastic properties of hippocampal dendritic spines underlie the attenuation of place learning in healthy aged rats. Neurobiol Learn Mem 109:94–103

    Article  PubMed  Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature 183:1592–15933

    Article  CAS  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ (2000) Long-term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron 26:473–482

    Article  CAS  PubMed  Google Scholar 

  • Hansel C, Linden DJ, D’Angelo E (2001) Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 4:467–475

    CAS  PubMed  Google Scholar 

  • Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  CAS  PubMed  Google Scholar 

  • Harris KM, Stevens JK (1988) Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 8:4455–4469

    CAS  PubMed  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa T, Rusakov DA, Bliss TVP, Fine A (1995) Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J Neurosci 15:5560–5573

    CAS  PubMed  Google Scholar 

  • Ito M (1984) The modifiable neuronal network of the cerebellum. Jpn J Physiol 34:781–792

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB, Belichenko PV (2002) Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and post-ischemic rat brain. J Cereb Blood Flow Metab 22:89–96

    Article  PubMed  Google Scholar 

  • Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Kim IH, Lee KJ, Lee JR, Park SK, Chun YH, Kim H, Rhyu IJ (2002) Specific plasticity of parallel fiber/Purkinje cell spine synapses by motor skill learning. Neuro Rep 13:1607–1610

    Google Scholar 

  • Klintsova AY, Greenough WT (1999) Synaptic plasticity in cortical systems. Curr Opin Neurobiol 9:203–208

    Article  CAS  PubMed  Google Scholar 

  • Koch C, Poggio T (1983) A theoretical analysis of electrical properties of spines. Proc R Soc Lond B Biol Sci 218:455–477

    Article  CAS  PubMed  Google Scholar 

  • Kozorovitskiy Y, Gross CG, Kopil C, Battaglia L, McBreen M, Stranahan AM, Gould E (2005) Experience induces structural and biochemical changes in the adult primate brain. Proc Natl Acad Sci USA 102:17478–17482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai KO, Ip NY (2013) Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta 1832:2257–2263

    Article  CAS  PubMed  Google Scholar 

  • Larramendi EM, Victor T (1967) Synapses on the Purkinje cell spines in the mouse. An electronmicroscopic study. Brain Res 5:15–30

    Article  CAS  PubMed  Google Scholar 

  • Lee KJ, Jung JG, Arii T, Imoto K, Rhyu IJ (2007) Morphological changes in dendritic spines of Purkinje cells associated with motor learning. Neurobiol Learn Mem 88:445–450

    Article  PubMed  Google Scholar 

  • Lee KF, Soares C, Bèïque JC (2012) Examining form and function of dendritic spines. Neural Plast 2012:704103

    PubMed Central  PubMed  Google Scholar 

  • Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163:78–90

    Article  PubMed  Google Scholar 

  • Liu N, He S, Yu X (2012) Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 7:e30803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T (2010) Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry 67:657–665

    Article  PubMed  Google Scholar 

  • Mandolesi L, De Bartolo P, Foti F, Gelfo F, Federico F, Leggio MG, Petrosini L (2008) Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. J Alzheimers Dis 15:11–28

    PubMed  Google Scholar 

  • Manto M, Oulad Ben Taib N (2010) Cerebellar nuclei: key roles for strategically located structures. Cerebellum 9:17–21

    Article  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morando L, Cesa R, Rasetti R, Harvey R, Strata P (2001) Role of glutamate delta -2 receptors in activity-dependent competition between heterologous afferent fibers. Proc Natl Acad Sci USA 98:9954–9959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morando L, Cesa R, Harvey RJ, Strata P (2005) Spontaneous electrical activity and structural plasticity in the mature cerebellar cortex. Ann N Y Acad Sci 1048:131–140

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10:247–259

    Article  PubMed  Google Scholar 

  • Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA 91:12673–12675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muhammad A, Mychasiuk R, Hosain S, Nakahashi A, Carroll C, Gibb R, Kolb B (2013) Training on motor and visual spatial learning tasks in early adulthood produces large changes in dendritic organization of prefrontal cortex and nucleus accumbens in rats given nicotine prenatally. Neuroscience 252:178–189

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Levis H, Murphy M (2004) Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem 81:200–210

    Article  CAS  PubMed  Google Scholar 

  • Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin

    Book  Google Scholar 

  • Petrinovic MM, Hourez R, Aloy EM, Dewarrat G, Gall D, Weinmann O, Gaudias J, Bachmann LC, Schiffmann SN, Vogt KE, Schwab ME (2013) Neuronal Nogo-A negatively regulates dendritic morphology and synaptic transmission in the cerebellum. Proc Natl Acad Sci USA 110:1083–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L (2009) On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev 61:221–239

    Article  PubMed  Google Scholar 

  • Pysh JJ, Weiss GM (1979) Exercise during development induces an increase in Purkinje cell dendritic tree size. Science 206:230–232

    Article  CAS  PubMed  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  CAS  PubMed  Google Scholar 

  • Rhyu IJ, Oda S, Uhm CS, Kim H, Suh YS, Abbott LC (1999a) Morphologic investigation of rolling mouse Nagoya (tg(rol)/tg(rol)) cerebellar Purkinje cells: an ataxic mutant, revisited. Neurosci Lett 266:49–52

    Article  CAS  PubMed  Google Scholar 

  • Rhyu IJ, Abbott LC, Walker DB, Sotelo C (1999b) An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg(la)/tg(la)) and compound heterozygous tottering/leaner (tg/tg(la)) mice. Neuroscience 90:717–728

    Article  CAS  PubMed  Google Scholar 

  • Rojas JJ, Deniz BF, Miguel PM, Diaz R, Hermel Edo E, Achaval M, Netto CA, Pereira LO (2013) Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat. Exp Neurol 241:25–33

    Article  PubMed  Google Scholar 

  • Rosenzweig MR, Bennett EL (1996) Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res 78:57–65

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig MR, Krech D, Bennet EL, Diamond MC (1962) Effects of environmental complexity and train on brain chemistry and anatomy. J Comp Physiol Psychol 55:429–437

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M (1987) Synaptic modification of parallel fiber-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. J Physiol 394:463–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scarmeas N, Stern Y (2003) Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25:625–633

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198

    Article  CAS  PubMed  Google Scholar 

  • Schreurs BG, Gusev PA, Tomsic D, Alkon DL, Shi T (1998) Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI. J Neurosci 18:5498–5507

    CAS  PubMed  Google Scholar 

  • Sdrulla AD, Linden DJ (2007) Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nat Neurosci 10:546–548

    Article  CAS  PubMed  Google Scholar 

  • Sotelo C, Hillman DE, Zamora AJ, Llinás R (1975) Climbing fiber deafferentation: its action on Purkinje cell dendritic spines. Brain Res 98:574–581

    Article  CAS  PubMed  Google Scholar 

  • Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  PubMed  Google Scholar 

  • Stern Y (2003) The concept of cognitive reserve: a catalyst for research. J Clin Exp Neuropsychol 25:589–593

    Article  PubMed  Google Scholar 

  • Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20:112–117

    Article  PubMed  Google Scholar 

  • Sugawara T, Hisatsune C, Le TD, Hashikawa T, Hirono M, Hattori M, Nagao S, Mikoshiba K (2013) Type 1 inositol trisphosphate receptor regulates cerebellar circuits by maintaining the spine morphology of Purkinje cells in adult mice. J Neurosci 33:12186–12196

    Article  CAS  PubMed  Google Scholar 

  • Thach WT, Goodkin HP, Keating JG (1992) The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci 15:403–442

    Article  CAS  PubMed  Google Scholar 

  • Tremml P, Lipp HP, Muller U, Wolfer DP (2002) Enriched early experiences of mice underexpressing the beta-amyloid precursor protein restore spatial learning capabilities but not normal open field behavior of adult animals. Genes Brain Behav 1:230–241

    Article  CAS  PubMed  Google Scholar 

  • Turner DA (1984) Conductance transients onto dendritic spines in a segmental cable model of hippocampal neurons. Biophys J 46:85–96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nature Rev Neurosci 1:191–198

    Article  Google Scholar 

  • Vazquez-Sanroman D, Sanchis-Segura C, Toledo R, Hernandez ME, Manzo J, Miquel M (2013) The effects of enriched environment on BDNF expression in the mouse cerebellum depending on the length of exposure. Behav Brain Res 243:118–128

    Article  CAS  PubMed  Google Scholar 

  • Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR (2000) Alterations in Purkinje cell spines of calbindin D-28k and parvalbumin knock-out mice. Eur J Neurosci 12:945–954

    Article  CAS  PubMed  Google Scholar 

  • Velázquez-Zamora DA, Martínez-Degollado M, González-Burgos I (2011) Morphological development of dendritic spines on rat cerebellar Purkinje cells. Int J Dev Neurosci 29:515–520

    Article  PubMed  Google Scholar 

  • Voogd J (1995) Cerebellum. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic press, San Diego, pp 277–308

    Google Scholar 

  • Wallace W, Bear MF (2004) A morphological correlate of synaptic scaling in visual cortex. J Neurosci 24:6928–6938

    Article  CAS  PubMed  Google Scholar 

  • Wallace W, Schaefer LH, Swedlow JR (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechniques 31:1076–1078 1080, 1082 passim

    CAS  PubMed  Google Scholar 

  • Whalley L, Starr J, Athawes R, Hunter D, Pattie A, Deary IJ (2000) Childhood mental ability and dementia. Neurology 55:1455–1459

    Article  CAS  PubMed  Google Scholar 

  • Whalley LJ, Deary IJ, Appleton CL, Starr JM (2004) Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 3:369–382

    Article  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  CAS  PubMed  Google Scholar 

  • Yau SY, Lau BW, Tong JB, Wong R, Ching YP, Qiu G, Tang SW, Lee TM, So KF (2011) Hippocampal neurogenesis and dendritic plasticity support running-improved spatial learning and depression-like behaviour in stressed rats. PLoS One 6:e24263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao C, Warner-Schmidt J, Duman RS, Gage FH (2012) Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev Neurobiol 72:937–942

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. Maurizio Abbate for the technical help with images deconvolution. The research was supported by MIUR fund to LP.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The animals used in the study described in this manuscript were maintained according to the guidelines for ethical conduct developed by the European Communities Council Directive of 22 September 2010 (2010/63/EU). All animal protocols used have been approved by the Ethical Committee on animal experiments of “Sapienza” University of Rome. The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. De Bartolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bartolo, P., Florenzano, F., Burello, L. et al. Activity-dependent structural plasticity of Purkinje cell spines in cerebellar vermis and hemisphere. Brain Struct Funct 220, 2895–2904 (2015). https://doi.org/10.1007/s00429-014-0833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0833-6

Keywords

Navigation