Skip to main content

Advertisement

Log in

Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Lysophosphatidic acid (LPA) is an intercellular signaling lipid that regulates multiple cellular functions, acting through specific G-protein coupled receptors (LPA1–6). Our previous studies using viable Malaga variant maLPA1-null mice demonstrated the requirement of the LPA1 receptor for normal proliferation, differentiation, and survival of the neuronal precursors. In the cerebral cortex LPA1 is expressed extensively in differentiating oligodendrocytes, in parallel with myelination. Although exogenous LPA-induced effects have been investigated in myelinating cells, the in vivo contribution of LPA1 to normal myelination remains to be demonstrated. This study identified a relevant in vivo role for LPA1 as a regulator of cortical myelination. Immunochemical analysis in adult maLPA1-null mice demonstrated a reduction in the steady-state levels of the myelin proteins MBP, PLP/DM20, and CNPase in the cerebral cortex. The myelin defects were confirmed using magnetic resonance spectroscopy and electron microscopy. Stereological analysis limited the defects to adult differentiating oligodendrocytes, without variation in the NG2+ precursor cells. Finally, a possible mechanism involving oligodendrocyte survival was demonstrated by the impaired intracellular transport of the PLP/DM20 myelin protein which was accompanied by cellular loss, suggesting stress-induced apoptosis. These findings describe a previously uncharacterized in vivo functional role for LPA1 in the regulation of oligodendrocyte differentiation and myelination in the CNS, underlining the importance of the maLPA1-null mouse as a model for the study of demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allard J, Barron S, Diaz J, Lubetzki C, Zalc B, Schwartz JC, Sokoloff P (1998) A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Eur J Neurosci 10:1045–1053

    Article  CAS  PubMed  Google Scholar 

  • Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558

    Article  CAS  PubMed  Google Scholar 

  • Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J (2013) Lysophosphatidic acid (LPA) and its receptor, LPA1, influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 61:2009–2022

    Article  PubMed Central  PubMed  Google Scholar 

  • Baslow MH (2003) N-Acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    Article  CAS  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  • Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 74:254–262

    Article  CAS  PubMed  Google Scholar 

  • Birgbauer E, Chun J (2006) New developments in the biological functions of lysophospholipids. Cell Mol Life Sci 63:2695–2701

    Article  CAS  PubMed  Google Scholar 

  • Blanco E, Bilbao A, Luque MJ, Palomino A, Bermudez-Silva FJ, Suarez J, Santin L, Gutierrez A, Campos-Sandoval JA, Marquez J, Estivill-Torrus G, Rodriguez De Fonseca F (2012) Lack of cocaine-induced conditioned locomotion is associated with altered expression of hippocampal glutamate receptors in mice lacking lpa1 receptor. Psychopharmacology 220:27–42

    Article  CAS  PubMed  Google Scholar 

  • Bonavita S, Di Salle F, Tedeschi G (1999) Proton MRS in neurological disorders. Eur J Radiol 30:125–131

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann V, Lynch KR (2002) FTY720: Targeting G-protein-coupled receptors for sphingosine 1-phosphate in transplantation and autoimmunity. Curr Opin Immunol 14:569–575

    Article  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Sánchez-López J, Hoyo-Becerra C, Matas Rico E, Zambrana-Infantes E, Chun J, Rodríguez de Fonseca F, Pedraza C, Estivill-Torrús G, Santín LJ (2010) Activity, anxiety and spatial memory impairments are dissociated in mice lacking the LPA1 receptor. Neurobiol Learn Mem 94:73–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G, Santín LJ (2011) Aggravation of the pathological consequences of chronic stress on hippocampal neurogenesis and spatial memory in mice lacking the LPA1 receptor. PLoS ONE 6(9):e25522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Pedraza C, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G, Santin LJ (2012) Hippocampal c-Fos activation in normal and LPA1-null mice after two object recognition tasks with different memory demands. Behav Brain Res 232:400–405

    Article  CAS  PubMed  Google Scholar 

  • Cervera P, Tirard M, Barron S, Allard J, Trottier S, Lacombe J, Daumas-Duport C, Sokoloff P (2002) Immunohistological localization of the myelinating cell-specific receptor LP(A1). Glia 38:126–136

    Article  PubMed  Google Scholar 

  • Choi JW, Chun J (2013) Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta 1831:20–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186

    Article  CAS  PubMed  Google Scholar 

  • Chun J (2005) Lysophospholipids in the nervous system. Prostaglandins Other Lipid Mediat 77:46–51

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Rosen H (2006) Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des 12:161–171

    Article  CAS  PubMed  Google Scholar 

  • Colman DR, Kreibich G, Frey AB, Sabatini DD (1982) Synthesis and incorporation of myelin polypeptides into CNS myelin. J Cell Biol 95:598–608

    Article  CAS  PubMed  Google Scholar 

  • Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc Natl Acad Sci USA 97:13384–13389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dawson J, Hotchin N, Lax S, Rumsby M (2003) Lysophosphatidic acid induces process retraction in CG-4 line oligodendrocytes and oligodendrocyte precursor cells but not in differentiated oligodendrocytes. J Neurochem 87:947–957

    Article  CAS  PubMed  Google Scholar 

  • Dennis D, White MA, Forrest AD, Yuelling LM, Nogaroli L, Afshari FS, Fox MA, Fuss B (2008) Phosphodiesterase- I/Autotaxin’s MORFO domain regulates oligodendroglial process network formation and focal adhesion organization. Mol Cell Neurosci 37:412–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dimou L, Simon C, Kirchhoff F, Takebayashi H, Götz M (2008) Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J Neurosci 28:10434–10442

    Article  CAS  PubMed  Google Scholar 

  • Drøjdahl N, Nielsen HH, Gardi JE, Wree A, Peterson AC, Nyengaard JR, Eyer J, Finsen B (2010) Axonal plasticity elicits long-term changes in oligodendroglia and myelinated fibers. Glia 58:29–42

    Article  PubMed  Google Scholar 

  • Edgar JM, Nave KA (2009) The role of CNS glia in preserving axon function. Curr Opin Neurobiol 19:498–504

    Article  CAS  PubMed  Google Scholar 

  • Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA, Brown A, Faichney AB, Snaidero N, Nave KA, Griffiths IR (2009) Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia 16:1815–1824

    Article  Google Scholar 

  • Emery B (2010) Regulation of oligodendrocyte differentiation and myelination. Science 330:779–782

    Article  CAS  PubMed  Google Scholar 

  • Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I, Del Arco I, Fernández-Llebrez P, Chun J, Rodríguez de Fonseca F (2008) Absence of LPA1 signaling results in defective cortical development. Cereb Cortex 18:938–950

    Article  PubMed  Google Scholar 

  • Estivill-Torrús G, Santín LJ, Pedraza C, Castilla-Ortega E, Rodriguez de Fonseca F (2013) Role of lysophosphatidic acid (LPA) in behavioral processes: implications for psychiatric disorders. In: Chun J (ed) Lysophospholipid receptors: signaling and biochemistry. Wiley, New Jersey, pp 451–474

    Chapter  Google Scholar 

  • Fannon AM, Moscarello MA (1990) Myelin basic protein is affected by reduced synthesis of myelin proteolipid protein in the jimpy mouse. Biochem J 268:105–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filippi CG, Uluğ AM, Deck MD, Zimmerman RD, Heier LA (2002) Developmental delay in children: assessment with proton MR spectroscopy. Am J Neuroradiol 23:882–888

    PubMed  Google Scholar 

  • Fox MA, Colello RJ, Macklin WB, Fuss B (2003) Phosphodiesterase-Ialpha/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol Cell Neurosci 23:507–519

    Article  CAS  PubMed  Google Scholar 

  • García-Fernández M, Castilla-Ortega E, Pedraza C, Blanco E, Hurtado-Guerrero I, Barbancho MA, Chun J, Rodríguez-de-Fonseca F, Estivill-Torrús G, Santín Núñez LJ (2012) Chronic immobilization in the malpar1 knockout mice increases oxidative stress in the hippocampus. Int J Neurosci 122:583–589

    Article  PubMed  CAS  Google Scholar 

  • Gow A, Southwood CM, Lazzarini RA (1998) Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus–Merzbacher disease. J Cell Biol 140:925–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave KA (1998) Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280:1610–1613

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ (1988) The new stereological tools: dissector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Acta Pathol Microbiol Immunol Scand 96:857–881

    Article  CAS  Google Scholar 

  • Hamilton BA, Yu BD (2012) Modifier genes and the plasticity of genetic networks in mice. PLoS Genet 8(4):e1002644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hammack BN, Fung KY, Hunsucker SW, Duncan MW, Burgoon MP, Owens GP, Gilden DH (2004) Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 10:245–260

    Article  CAS  PubMed  Google Scholar 

  • Handford EJ, Smith D, Hewson L, McAllister G, Beer MS (2001) Edg2 receptor distribution in adult rat brain. Neuroreport 12:757–760

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R (2012) ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci 32:8855–8864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68: 668–681

  • Karim SA, Barrie JA, McCulloch MC, Montague P, Edgar JM, Kirkham D, Anderson TJ, Nave KA, Griffiths IR, McLaughlin M (2007) PLP overexpression perturbs myelin protein composition and myelination in a mouse model of Pelizaeus–Merzbacher disease. Glia 55:341–351

    Article  PubMed  Google Scholar 

  • Kearney JA (2011) Genetic modifiers of neurological disease. Curr Opin Genet Dev 21:349–353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keshavan MS, Diwadkar VA, Harenski K, Rosenberg DR, Sweeney JA, Pettegrew JW (2002) Abnormalities of the corpus callosum in first episode, treatment naive schizophrenia. J Neurol Neurosurg Psychiatry 72:757–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khiat A, Lesage J, Boulanger Y (2007) Quantitative MRS study of Baló’s concentric sclerosis lesions. Magn Reson Imaging 25:1112–1115

    Article  PubMed  Google Scholar 

  • Klugmann M, Schwab MH, Pühlhofer A, Schneider A, Zimmermann F, Griffiths IR, Nave KA (1997) Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18:59–70

    Article  CAS  PubMed  Google Scholar 

  • Lin W, Popko B (2009) Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci 212:379–385

    Article  CAS  Google Scholar 

  • Lin ME, Herr DR, Chun J (2010) Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91:130–138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linstedt AD, Mehta A, Suhan J, Reggio H, Hauri HP (1997) Sequence and overexpression of GPP130/GIMPc: evidence for saturable pH-sensitive targeting of a type II early Golgi membrane protein. Mol Biol Cell 8:1073–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L, Hasan KM, Steinberg JL, Narayana PA, Lane SD, Zuniga EA, Kramer LA, Moeller FG (2009) Diffusion tensor imaging in cocaine dependence: regional effects of cocaine on corpus callosum and effect of cocaine administration route. Drug Alcohol Depend 104:262–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matas-Rico E, García-Díaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C, Fernández-Llebrez P, Téllez T, Redondo M, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39:342–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsushita T, Amagai Y, Soga T, Terai K, Obinata M, Hashimoto S (2005) A novel oligodendrocyte cell line OLP6 shows the successive stages of oligodendrocyte development: late progenitor, immature and mature stages. Neuroscience 136:115–121

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin M, Barrie JA, Karim SA, Montague P, Edgar JM, Kirkham D, Thomson CE, Griffiths IR (2006a) Processing of PLP in a model of Pelizaeus–Merzbacher disease/SPG2 due to the rumpshaker mutation. Glia 53:715–722

    Article  PubMed  Google Scholar 

  • McLaughlin M, Karim SA, Montague P, Barrie JA, Kirkham D, Griffiths IR, Edgar JM (2006b) Genetic background influences UPR but not PLP processing in the rumpshaker model of PMD/SPG2. Neurochem Res 32:167–176

    Article  PubMed  CAS  Google Scholar 

  • McLean IW, Nakane PK (1974) Periodate-lysine-paraformaldehyde fixative. A new fixative for immunoelectronmicroscopy. Histochem Cytochem 22:1077

    Article  CAS  Google Scholar 

  • Miller DH, Austin SJ, Connelly A, Youl BD, Gadian DG, McDonald WI (1991) Proton magnetic resonance spectroscopy of an acute and chronic lesion in multiple sclerosis. Lancet 337:58–59

    Article  CAS  PubMed  Google Scholar 

  • Miyata S, Koyama Y, Takemoto K, Yoshikawa K, Ishikawa T, Taniguchi M, Inoue K, Aoki M, Hori O, Katayama T, Tohyama M (2011) Plasma corticosterone activates SGK1 and induces morphological changes in oligodendrocytes in corpus callosum. PLoS ONE 6:e19859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Möller T, Musante DB, Ransom BR (1999) Lysophosphatidic acid-induced calcium signals in cultured rat oligodendrocytes. NeuroReport 10:2929–2932

    Article  PubMed  Google Scholar 

  • Monge M, Kadiiski D, Jacque CM, Zalc B (1986) Oligodendroglial expression and deposition of four major myelin constituents in the myelin sheath during development. An in vivo study. Dev Neurosci 8:222–235

    Article  CAS  PubMed  Google Scholar 

  • Moolenar WH, van Meeteren LA, Giepmans BNG (2004) The ins and outs of lysophosphatidic acid signaling. BioEssays 26:870–881

    Article  CAS  Google Scholar 

  • Moore CS, Milner R, Nishiyama A, Frausto RF, Serwanski DR, Pagarigan RR, Whitton JL, Miller RH, Crocker SJ (2011) Astrocytic tissue inhibitor of metalloproteinase-1 (TIMP-1) promotes oligodendrocyte differentiation and enhances CNS myelination. J Neurosci 31:6247–6254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakahara J, Tan-Takeuchi K, Seiwa C, Yagi T, Aiso S, Kawamura K, Asou H (2001) Myelin basic protein is necessary for the regulation of myelin-associated glycoprotein expression in mouse oligodendroglia. Neurosci Lett 298:163–166

    Article  CAS  PubMed  Google Scholar 

  • Narayana PA, Ahobila-Vajjula P, Ramu J, Herrera J, Steinberg JL, Moeller FG (2009) Diffusion tensor imaging of cocaine-treated rodents. Psychiatry Res 171:242–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252

    Article  CAS  PubMed  Google Scholar 

  • Nogaroli L, Yuelling LM, Dennis J, Gorse K, Payne SG, Fuss B (2009) Lysophosphatidic acid can support the formation of membranous structures and an increase in MBP mRNA levels in differentiating oligodendrocytes. Neurochem Res 34:182–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noguchi K, Herr D, Mutoh T, Chun J (2009) Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol 9:15–23

    Article  CAS  PubMed  Google Scholar 

  • Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21:749–757

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Pedraza C, Sánchez-López J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, García-Fernández M, Rodriguez de Fonseca F, Chun J, Santín LJ, Estivill-Torrús G (2013) Fear extinction and acute stress reactivity reveal a role of LPA1 receptor in regulating emotional-like behaviors. Brain Struct Funct. doi:10.1007/s00429-013-0592-9

    PubMed  Google Scholar 

  • Penet MF, Laigle C, Fur YL, Confort-Gouny S, Heurteaux C, Cozzone PJ, Viola A (2006) In vivo characterization of brain morphometric and metabolic endophenotypes in three inbred strains of mice using magnetic resonance techniques. Behav Genet 36:732–744

    Article  PubMed  Google Scholar 

  • Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system: neurons and their supporting cells. Oxford University Press, New York

    Google Scholar 

  • Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  CAS  PubMed  Google Scholar 

  • Roberts C, Winter P, Shilliam CS, Hughes ZA, Langmead C, Maycox PR, Dawson LA (2005) Neurochemical changes in LPA1 receptor deficient mice-a putative model of schizophrenia. Neurochem Res 30:371–377

    Article  CAS  PubMed  Google Scholar 

  • Rohrer J, Schweizer A, Russell D, Kornfeld S (1996) The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J Cell Biol 132:565–576

    Article  CAS  PubMed  Google Scholar 

  • Rosenbluth J, Nave KA, Mierzwa A, Schiff R (2006) Subtle myelin defects in PLP-null mice. Glia 54:172–182

    Article  PubMed  Google Scholar 

  • Santín L, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E, Sánchez-López J, Riquelme R, Varela-Nieto I, De la Villa P, Suardiaz M, Chun J, Rodríguez de Fonseca F, Estivill-Torrús G (2009) Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav 8:772–784

    Article  PubMed  CAS  Google Scholar 

  • Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6:683–690

    Article  CAS  PubMed  Google Scholar 

  • Simone IL, Federico F, Trojano M, Tortorella C, Liguori M, Giannini P, Picciola E, Natile G, Livrea P (1996) High resolution proton MR spectroscopy of cerebrospinal fluid in MS patients. Comparison with biochemical changes in demyelinating plaques. J Neurol Sci 144:182–190

    Article  PubMed  Google Scholar 

  • Sohn J, Selvaraj V, Wakayama K, Orosco L, Lee E, Crawford SE, Guo F, Lang J, Horiuchi M, Zarbalis K, Itoh T, Deng W, Pleasure D (2012) PEDF is a novel oligodendrogenic morphogen acting on the adult SVZ and corpus callosum. J Neurosci 32:12152–12164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Somogyi P, Takagi H (1982) A note on the use of picric acid–paraformaldehyde–glutaraldehyde fixative for correlated light- and electron microscopic immunocytochemistry. Neuroscience 7:1779

    Article  CAS  PubMed  Google Scholar 

  • Sorensen A, Moffat K, Thomson C, Barnett SC (2008) Astrocytes, but not olfactory ensheathing cells or Schwann cells, promote myelination of CNS axons in vitro. Glia 56:750–763

    Article  PubMed  Google Scholar 

  • Southwood C, Gow A (2001) Molecular pathways of oligodendrocyte apoptosis revealed by mutations in the proteolipid protein gene. Microsc Res Tech 52:700–708

    Article  CAS  PubMed  Google Scholar 

  • Southwood CM, Garbern J, Jiang W, Gow A (2002) The unfolded protein response modulates disease severity in Pelizaeus–Merzbacher disease. Neuron 36:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spohr TC, Choi JW, Gardell SE, Herr DR, Rehen SK, Gomes FC, Chun J (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. J Biol Chem 283:7470–7479

    Article  PubMed  CAS  Google Scholar 

  • Spohr TC, Dezonne RS, Rehen SK, Gomes FC (2011) Astrocytes treated by lysophosphatidic acid induce axonal outgrowth of cortical progenitors through extracellular matrix protein and epidermal growth factor signaling pathway. J Neurochem 119:113–123

    Article  CAS  Google Scholar 

  • Stankoff B, Barron S, Allard J, Barbin G, Noel F, Aigrot MS, Premont J, Sokoloff P, Zalc B, Lubetzki C (2002) Oligodendroglial expression of Edg-2 receptor: developmental analysis and pharmacological responses to lysophosphatidic acid. Mol Cell Neurosci 20:415–428

    Article  CAS  PubMed  Google Scholar 

  • Steen RG, Ogg RJ (2005) Abnormally high levels of brain N-acetylaspartate in children with sickle cell disease. Am J Neuroradiol 26:463–468

    PubMed  Google Scholar 

  • Tigyi G (2010) Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 161:241–270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362:798–804

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Moench M, Pulley E, Barbosa E, Tennekoon GI, Griffin J (1987) Spatial segregation of mRNA encoding myelinspecific proteins. Proc Natl Acad Sci USA 84:7773–7777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 59:55–61

    Article  CAS  PubMed  Google Scholar 

  • Van der Knaap LJ, van der Ham IJ (2011) How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res 223:211–221

    Article  PubMed  Google Scholar 

  • Villarreal G, Hamilton DA, Graham DP, Driscoll I, Qualls C, Petropoulos H, Brooks WM (2004) Reduced area of the corpus callosum in posttraumatic stress disorder. Psychiatry Res 131:227–235

    Article  PubMed  Google Scholar 

  • Wang CC (1998) Protein disulfide isomerase assists protein folding as both an isomerase and a chaperone. Ann N Y Acad Sci 864:9–13

    Article  CAS  PubMed  Google Scholar 

  • Warringa RAJ, Hoeben RC, Koper JW, Sykes JEC, van Golde LMG, Lopes-Cardozo M (1987) Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures. Dev Br Res 34:79–86

    Article  CAS  Google Scholar 

  • Watkins TA, Emery B, Mulinyawe S, Barres BA (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398:587–598

    Article  CAS  PubMed  Google Scholar 

  • Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, Orfaniotou F, Dhaunchak A, Brinkmann BG, Möbius W, Guarente L, Casaccia-Bonnefil P, Jahn O, Nave KA (2007) Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci 27:7717–7730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • West MJ (1993) New stereological methods for counting neurons. Neurobiol Aging 14:275–285

    Article  CAS  PubMed  Google Scholar 

  • Whitford TJ, Kubicki M, Schneiderman JS, O’Donnell LJ, King R, Alvarado JL, Khan U, Markant D, Nestor PG, Niznikiewicz M, McCarley RW, Westin CF, Shenton ME (2010) Corpus callosum abnormalities and their association with psychotic symptoms in patients with schizophrenia. Biol Psychiatry 68:70–77

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu N, Lariosa-Willingham KD, Lin FF, Webb M, Rao TS (2004) Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendrocytes. Glia 45:17–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Carlos III Health Institute, State Department of Research, Development and Innovation, Spanish Ministry of Economy and Competitiveness (Grant Numbers PI10/02514—co-funded by European Research Development Fund—, to G.E-T.; SAF2011 to IV-N); Andalusian Regional Ministries of Health (Nicolás Monardes Programme, and Grants PI0187/2008, PI0232/2007 to G.E-T.) and of Economy, Innovation, Science and Employment (CTS643 and CTS433 research group grants to G.E-T. and F.R-DF., respectively); Ramon Areces Foundation (Ramon Areces Fellowship to B.G-D.); and the National Institutes of Health (USA) (Grant Numbers MH051699 and MH01723 to J.C.). We gratefully acknowledge IBIMA joint services, common support structures for research (ECAI) of General Services, Microscopy and Animal Experimentation, for management, immunohistology and maintenance of mice, respectively, as well as technical assistance. Likewise we are obliged to central microscopy facilities at Universidad de Málaga for confocal and electron microscopy. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Estivill-Torrús.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Díaz, B., Riquelme, R., Varela-Nieto, I. et al. Loss of lysophosphatidic acid receptor LPA1 alters oligodendrocyte differentiation and myelination in the mouse cerebral cortex. Brain Struct Funct 220, 3701–3720 (2015). https://doi.org/10.1007/s00429-014-0885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0885-7

Keywords

Navigation