Skip to main content
Log in

Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

This paper studies the link between resting-state functional connectivity (FC), measured by the correlations of fMRI BOLD time courses, and structural connectivity (SC), estimated through fiber tractography. Instead of a static analysis based on the correlation between SC and FC averaged over the entire fMRI time series, we propose a dynamic analysis, based on the time evolution of the correlation between SC and a suitably windowed FC. Assessing the statistical significance of the time series against random phase permutations, our data show a pronounced peak of significance for time window widths around 20–30 TR (40–60 s). Using the appropriate window width, we show that FC patterns oscillate between phases of high modularity, primarily shaped by anatomy, and phases of low modularity, primarily shaped by inter-network connectivity. Building upon recent results in dynamic FC, this emphasizes the potential role of SC as a transitory architecture between different highly connected resting-state FC patterns. Finally, we show that the regions contributing the most to these whole-brain level fluctuations of FC on the supporting anatomical architecture belong to the default mode and the executive control networks suggesting that they could be capturing consciousness-related processes such as mind wandering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html.

References

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2012) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

  • Amico E, Gomez F, Di Perri C, Vanhaudenhuyse A, Lesenfants D, Boveroux P, Bonhomme V, Brichant JF, Marinazzo D, Laureys S (2014) Posterior cingulate cortex-related co-activation patterns: a resting state FMRI study in propofol-induced loss of consciousness. PLoS One 9:e100012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian M, Sackur J (2013) Mind wandering at the fingertips: automatic parsing of subjective states based on response time variability. Front Psychol 4:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360:1001–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Breakspear M, Jirsa V, Deco G (2010) Computational models of the brain: from structure to function. Neuroimage 52:727–30

    Article  PubMed  Google Scholar 

  • Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci 11:49–57

    Article  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–98

    Article  CAS  PubMed  Google Scholar 

  • Cabral J, Hugues E, Sporns O, Deco G (2011) Role of local network oscillations in resting-state functional connectivity. Neuroimage 57:130–9

    Article  PubMed  Google Scholar 

  • Cammoun L, Gigandet X, Meskaldji D, Thiran JP, Sporns O, Do KQ, Maeder P, Meuli R, Hagmann P (2012) Mapping the human connectome at multiple scales with diffusion spectrum mri. J Neurosci Methods 203:386–97

    Article  PubMed  Google Scholar 

  • Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fmri. Neuroimage 50:81–98

    Article  PubMed  Google Scholar 

  • Christoff K, Gordon AM, Smallwood J, Smith R, Schooler JW (2009) Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci USA 106:8719–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–33

    Article  PubMed  Google Scholar 

  • Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deco G, Hagmann P, Hudetz AG, Tononi G (2013a) Modeling resting-state functional networks when the cortex falls sleep: local and global changes. Cereb Cortex 24:3180–3194

  • Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M (2013b) Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. J Neurosci 33:11239–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Kwaasteniet B, Ruhe E, Caan M, Rive M, Olabarriaga S, Groefsema M, Heesink L, van Wingen G, Denys D (2013) Relation between structural and functional connectivity in major depressive disorder. Biol Psychiatry 74:40–7

    Article  PubMed  Google Scholar 

  • Deco G, Senden M, Jirsa V (2012) How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin model. Front Comput Neurosci 6:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–80

    Article  PubMed  Google Scholar 

  • Doucet G, Naveau M, Petit L, Zago L, Crivello F, Jobard G, Delcroix N, Mellet E, Tzourio-Mazoyer N, Mazoyer B, Joliot M (2012) Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. Neuroimage 59:3194–200

    Article  PubMed  Google Scholar 

  • Edgington E, Onghena P (1969) Randomization tests. CRC Press

  • Engel J Jr, Thompson PM, Stern JM, Staba RJ, Bragin A, Mody I (2013) Connectomics and epilepsy. Curr Opin Neurol 26:186–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Eryilmaz H, Van De Ville D, Schwartz S, Vuilleumier P (2011) Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. Neuroimage 54:2481–91

    Article  PubMed  Google Scholar 

  • Fox KCR, Nijeboer S, Solomonova E, Domhoff GW, Christoff K (2013) Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports. Front Hum Neurosci 7:412

    PubMed  PubMed Central  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56:171–84

    Article  CAS  PubMed  Google Scholar 

  • Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1:13–36

    Article  PubMed  Google Scholar 

  • Gao W, Zhu H, Giovanello K, Lin W (2010) Multivariate network-level approach to detect interactions between large-scale functional systems. Med Image Comput Comput Assist Interv 13:298–305

    PubMed  PubMed Central  Google Scholar 

  • Goldberg II, Harel M, Malach R (2006) When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50:329–39

    Article  CAS  PubMed  Google Scholar 

  • Gollo LL, Breakspear M (2014) The frustrated brain: from dynamics on motifs to communities and networks. Philos Trans R Soc Lond B Biol Sci 369:20130532

  • Gollo LL, Zalesky A, Hutchison RM, van den Heuvel M, Breakspear M (2015) Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations. Philos Trans R Soc Lond B Biol Sci 370:20140165

  • Gonzalez-Castillo J, Handwerker DA, Robinson ME, Hoy CW, Buchanan LC, Saad ZS, Bandettini PA (2014) The spatial structure of resting state connectivity stability on the scale of minutes. Front Neurosci 8:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS (2011) Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Front Neuroinform 5:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–8

    Article  CAS  PubMed  Google Scholar 

  • Griffa A, Baumann PS, Thiran JP, Hagmann P (2013) Structural connectomics in brain diseases. Neuroimage 80:515–26

    Article  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–94

    Article  CAS  PubMed  Google Scholar 

  • Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn B, Ross TJ, Stein EA (2007) Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex 17:1664–71

    Article  PubMed  Google Scholar 

  • Handwerker DA, Roopchansingh V, Gonzalez-Castillo J, Bandettini PA (2012) Periodic changes in fMRI connectivity. Neuroimage 63:1712–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasenkamp W, Wilson-Mendenhall CD, Duncan E, Barsalou LW (2012) Mind wandering and attention during focused meditation: a fine-grained temporal analysis of fluctuating cognitive states. Neuroimage 59:750–60

    Article  PubMed  Google Scholar 

  • Heine L, Soddu A, Gómez F, Vanhaudenhuyse A, Tshibanda L, Thonnard M, Charland-Verville V, Kirsch M, Laureys S, Demertzi A (2012) Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states. Front Psychol 3:295

    Article  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106:2035–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 52:766–76

    Article  PubMed  Google Scholar 

  • Hutchison RM, Womelsdorf T, Allen EA, Bandettini PA, Calhoun VD, Corbetta M, Della Penna S, Duyn JH, Glover GH, Gonzalez-Castillo J, Handwerker DA, Keilholz S, Kiviniemi V, Leopold DA, de Pasquale F, Sporns O, Walter M, Chang C (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–78

    Article  PubMed  Google Scholar 

  • Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2012) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154-2177

  • Jahanshad N, Rajagopalan P, Hua X, Hibar DP, Nir TM, Toga AW, Jack CR Jr, Saykin AJ, Green RC, Weiner MW, Medland SE, Montgomery GW, Hansell NK, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Thompson PM (2013) Genome-wide scan of healthy human connectome discovers spon1 gene variant influencing dementia severity. Proc Natl Acad Sci USA 110:4768–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Vemuri P, Murphy MC, Gunter JL, Senjem ML, Machulda MM, Przybelski SA, Gregg BE, Kantarci K, Knopman DS, Boeve BF, Petersen RC, Jack CR Jr (2012) Non-stationarity in the “resting brain’s” modular architecture. PLoS One 7:e39731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser M (2013) The potential of the human connectome as a biomarker of brain disease. Front Hum Neurosci 7:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiviniemi V, Vire T, Remes J, Elseoud AA, Starck T, Tervonen O, Nikkinen J (2011) A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect 1:339–47

    Article  PubMed  Google Scholar 

  • Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16:241–50

    Article  PubMed  Google Scholar 

  • Kötter R, Sommer FT (2000) Global relationship between anatomical connectivity and activity propagation in the cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355:127–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucyi A, Davis KD (2014) Dynamic functional connectivity of the default mode network tracks daydreaming. Neuroimage 100:471–480

    Article  PubMed  Google Scholar 

  • Lamme VA (2003) Why visual attention and awareness are different. Trends Cogn Sci 7:12–18

    Article  PubMed  Google Scholar 

  • Leonardi N, Richiardi J, Gschwind M, Simioni S, Annoni JM, Schluep M, Vuilleumier P, Van De Ville D (2013) Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage 83:937–950

  • Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104:430–6

    Article  PubMed  Google Scholar 

  • Lieberman MD (2007) Social cognitive neuroscience: a review of core processes. Annu Rev Psychol 58:259–89

    Article  PubMed  Google Scholar 

  • Lindquist MA, Xu Y, Nebel MB, Caffo BS (2014) Evaluating dynamic bivariate correlations in resting-state fmri: a comparison study and a new approach. Neuroimage 101:531–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Duyn JH (2013) Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proc Natl Acad Sci USA 110:4392–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv P, Guo L, Hu X, Li X, Jin C, Han J, Li L, Liu T (2013) Modeling dynamic functional information flows on large-scale brain networks. Med Image Comput Comput Assist Interv 16:698–705

    PubMed  Google Scholar 

  • Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal of global effects from fmri time series. NeuroImage 22:360–6

    Article  PubMed  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Hum Brain Mapp 2:2–22

    Article  Google Scholar 

  • Messé A, Rudrauf D, Benali H, Marrelec G (2014) Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput Biol 10:e1003530

    Article  PubMed  PubMed Central  Google Scholar 

  • Moussa MN, Steen MR, Laurienti PJ, Hayasaka S (2012) Consistency of network modules in resting-state fmri connectome data. PLoS One 7:e44428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44:893–905

    Article  PubMed  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69: 026113

  • Onnela JP, Saramäki J, Kertesz J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71:065103

  • Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342:1238411

    Article  PubMed  Google Scholar 

  • Passingham RE, Stephan KE, Kötter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3:606–16

    Article  CAS  PubMed  Google Scholar 

  • Richiardi J, Eryilmaz H, Schwartz S, Vuilleumier P, Van De Ville D (2011) Decoding brain states from fMRI connectivity graphs. Neuroimage 56:616–26

    Article  PubMed  Google Scholar 

  • Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–69

    Article  PubMed  Google Scholar 

  • Sakoğlu U, Pearlson GD, Kiehl KA, Wang YM, Michael AM, Calhoun VD (2010) A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. MAGMA 23:351–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen K, Hutchison RM, Bezgin G, Everling S, McIntosh AR (2015) Network structure shapes spontaneous functional connectivity dynamics. J Neurosci 35:5579–88

    Article  CAS  PubMed  Google Scholar 

  • Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb Cortex 22:158–65

    Article  CAS  PubMed  Google Scholar 

  • Sidlauskaite J, Wiersema JR, Roeyers H, Krebs RM, Vassena E, Fias W, Brass M, Achten E, Sonuga-Barke E (2014) Anticipatory processes in brain state switching—evidence from a novel cued-switching task implicating default mode and salience networks. Neuroimage 98C:359–365

    Article  Google Scholar 

  • Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–19

    Article  PubMed  Google Scholar 

  • Smith SW (1997) The scientist and engineer’s guide to digital signal processing, 2nd edn. California Technical Publications

  • Sporns O (2002) Graph theory methods for the analysis of neural connectivity patterns. Neuroscience databases. A Practical Guide. In: Kötter R (ed), pp 171–186

  • Sporns O, Chialvo D, Kaiser M, Hilgetag C (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Edelman GM (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex 10:127–141

    Article  CAS  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  PubMed Central  Google Scholar 

  • Stouffer SES, DeVinney L, Star S, Williams R (1949) The American soldier, vol. 1: adjustment during army life. Princeton University Press

  • Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front Physiol 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer J (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35:1459–72

    Article  PubMed  Google Scholar 

  • Tournier JD, Calamante F, Connelly A (2012) MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 22:53–66

    Article  Google Scholar 

  • Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–85

    Article  PubMed  Google Scholar 

  • Vanhaudenhuyse A, Demertzi A, Schabus M, Noirhomme Q, Bredart S, Boly M, Phillips C, Soddu A, Luxen A, Moonen G, Laureys S (2011) Two distinct neuronal networks mediate the awareness of environment and of self. J Cogn Neurosci 23:570–8

    Article  PubMed  Google Scholar 

  • Van de Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–84

    Article  PubMed  Google Scholar 

  • Van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–41

    Article  PubMed  Google Scholar 

  • van Schouwenburg MR, Zwiers MP, van der Schaaf ME, Geurts DEM, Schellekens AFA, Buitelaar JK, Verkes RJ, Cools R (2013) Anatomical connection strength predicts dopaminergic drug effects on fronto-striatal function. Psychopharmacology (Berl) 227:521–31

    Article  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–6

    Article  CAS  PubMed  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73

    Article  Google Scholar 

  • Yang Z, Craddock RC, Margulies DS, Yan CG, Milham MP (2014) Common intrinsic connectivity states among posteromedial cortex subdivisions: insights from analysis of temporal dynamics. Neuroimage 93(Pt 1):124–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zalesky A, Breakspear M (2015) Towards a statistical test for functional connectivity dynamics. Neuroimage 114:466–70

    Article  PubMed  Google Scholar 

  • Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M (2014) Time-resolved resting-state brain networks. Proc Natl Acad Sci USA 111:10341–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler E, Foret A, Mascetti L, Muto V, Le Bourdiec-Shaffii A, Stender J, Balteau E, Dideberg V, Bours V, Maquet P, Phillips C (2013) Altered white matter architecture in BDNF met carriers. PLoS One 8:e69290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Liégeois.

Additional information

Steven Laureys and Rodolphe Sepulchre contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liégeois, R., Ziegler, E., Phillips, C. et al. Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints. Brain Struct Funct 221, 2985–2997 (2016). https://doi.org/10.1007/s00429-015-1083-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1083-y

Keywords

Navigation