Skip to main content
Log in

Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain

Brain Structure and Function Aims and scope Submit manuscript

Abstract

Serotonergic neurons of the raphe nuclei exhibit anatomical, neurochemical and elecrophysiological heterogeneity that likely underpins their specific role in multiple behaviors. However, the precise organization of serotonin (5-HT) neurons to orchestrate 5-HT release patterns throughout the brain is not well understood. We compared the electrophysiological and neurochemical properties of dorsal and median raphe 5-HT neurons projecting to the medial prefrontal cortex (mPFC), amygdala (BLA) and dorsal hippocampus (dHP), combining retrograde tract tracing with brain slice electrophysiology and single-cell RT-PCR in Pet1-EGFP mice. Our results show that 5-HT neurons projecting to the dHP and the mPFC and the BLA form largely non-overlapping populations and that BLA-projecting neurons have characteristic excitability and membrane properties. In addition, using an unbiased clustering method that correlates anatomical, molecular and electrophysiological phenotypes, we find that 5-HT neurons with projections to the mPFC and the dHP segregate from those projecting to the BLA. Single-cell gene profiling showed a restricted expression of the peptide galanin in the population of 5-HT neurons projecting to the mPFC. Finally, cluster analysis allowed identifying an atypical subtype of 5-HT neuron with low excitability, long firing delays and preferential expression of the vesicular glutamate transporter type 3. Overall, these findings allow to define correlated anatomical and physiological identities of serotonin raphe neurons that help understanding how discrete raphe cells subpopulations account for the heterogeneous activities of the midbrain serotonergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aghajanian GK, Vandermaelen CP (1982) Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effect of LSD. Brain Res 238:463–469

    Article  CAS  PubMed  Google Scholar 

  • Alonso A, Merchán P, Sandoval JE, Sánchez-Arrones L, Garcia-Cazorla A, Artuch R, Ferrán JL, Martínez-de-la-Torre M, Puelles L (2012) Development of the serotonergic cells in murine raphe nuclei and their relations with rhombomeric domains. Brain Struct Functi 18:1229–1277

    Google Scholar 

  • Amilhon B, Lepicard E, Renoir T, Mongeau R, Popa D, Poirel O, Miot S, Gras C, Gardier AM, Gallego J, Hamon M, Lanfumey L, Gasnier B, Giros B, El Mestikawy S (2010) VGLUT3 (vesicular glutamate transporter type 3) contribution to the regulation of serotonergic transmission and anxiety. J Neurosci 30:2198–2210

    Article  CAS  PubMed  Google Scholar 

  • Andrade R, Haj-Dahmane S (2013) Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci 4:22–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aznar S, Kostova V, Christiansen SH, Knudsen GM (2005) Alpha 7 nicotinic receptor subunit is present on serotonin neurons projecting to hippocampus and septum. Synapse 55:196–200

    Article  CAS  PubMed  Google Scholar 

  • Bang SJ, Jensen P, Dymecki SM, Commons KG (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35:85–96

    Article  PubMed  Google Scholar 

  • Beck SG, Pan Y-Z, Akanwa AC, Kirby LG (2004a) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91:994–1005

    Article  PubMed  Google Scholar 

  • Beck SG, Pan Y-Z, Akanwa AC, Kirby LG (2004b) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91:994–1005

    Article  PubMed  Google Scholar 

  • Blank T, Nijholt I, Kye M-J, Spiess J (2004) Small conductance Ca2+ -activated K+ channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord 3:161–167

    Article  CAS  PubMed  Google Scholar 

  • Brust RD, Corcoran AE, Richerson GB, Nattie E, Dymecki SM (2014) Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep 9:2152–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buhot MC, Martin S, Segu L (2000) Role of serotonin in memory impairment. Ann Med 32:210–221

    Article  CAS  PubMed  Google Scholar 

  • Bunin MA, Wightman RM (1999) Paracrine neurotransmission in the CNS: involvement of 5-HT. Trends Neurosci 22:377–382

    Article  CAS  PubMed  Google Scholar 

  • Calizo LH, Akanwa A, Ma X, Pan Y-Z, Lemos JC, Craige C, Heemstra LA, Beck SG (2011) Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61:524–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cauli B, Porter JT, Tsuzuki K, Lambolez B, Rossier J, Quenet B, Audinat E (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97:6144–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandler DJ, Gao W-J, Waterhouse BD (2014) Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc Natl Acad Sci USA 111:6816–6821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan-Palay V, Jonsson G, Palay SL (1978) Serotonin and substance P coexist i, neurons of the rat’s central nervous system. Proc Natl Acad Sci USA 75:1582–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commons KG (2015) Two major network domains in the dorsal raphe nucleus. J Comp Neurol 523:1488–1504

    Article  PubMed  PubMed Central  Google Scholar 

  • Commons KG, Connolley KR, Valentino RJ (2003) A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 28:206–215

    Article  CAS  PubMed  Google Scholar 

  • Crawford LK, Craige CP, Beck SG (2010) Increased intrinsic excitability of lateral wing serotonin neurons of the dorsal raphe: a mechanism for selective activation in stress circuits. J Neurophysiol 103:2652–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deneris ES, Wyler SC (2012) Serotonergic transcriptional networks and potential importance to mental health. Nat Neurosci 15:519–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez SP, Gaspar P (2012) Investigating anxiety and depressive-like phenotypes in genetic mouse models of serotonin depletion. Neuropharmacology 62:144–154

    Article  CAS  PubMed  Google Scholar 

  • Fu W, Le Maître E, Fabre V, Bernard J-F, David Xu Z-Q, Hökfelt T (2010) Chemical neuroanatomy of the dorsal raphe nucleus and adjacent structures of the mouse brain. J Comp Neurol 518:3464–3494

    Article  CAS  PubMed  Google Scholar 

  • Gagnon D, Parent M (2014) Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS ONE 9:e87709

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartside SE, Hajós-Korcsok E, Bagdy E, Hársing LG Jr, Sharp T, Hajós M (2000) Neurochemical and electrophysiological studies on the functional significance of burst firing in serotonergic neurons. Neuroscience 98:295–300

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Lillesaar C (2012) Probing the diversity of serotonin neurons. Philos Trans R Soc Lond B Biol Sci 367:2382–2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graeff FG, Zangrossi H Jr (2010) The dual role of serotonin in defense and the mode of action of antidepressants on generalized anxiety and panic disorders. Cent Nerv Syst Agents Med Chem 10:207–217

    Article  CAS  PubMed  Google Scholar 

  • Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    CAS  PubMed  Google Scholar 

  • Gras C, Amilhon B, Lepicard EM, Poirel O, Vinatier J, Herbin M, Dumas S, Tzavara ET, Wade MR, Nomikos GG, Hanoun N, Saurini F, Kemel M-L, Gasnier B, Giros B, El Mestikawy S (2008) The vesicular glutamate transporter VGLUT3 synergizes striatal acetylcholine tone. Nat Neurosci 11:292–300

    Article  CAS  PubMed  Google Scholar 

  • Hajós M, Allers KA, Jennings K, Sharp T, Charette G, Sík A, Kocsis B (2007) Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci 25:119–126

    Article  PubMed  Google Scholar 

  • Hale MW, Lowry CA (2011) Functional topography of midbrain and pontine serotonergic systems: implications for synaptic regulation of serotonergic circuits. Psychopharmacology 213:243–264

    Article  CAS  PubMed  Google Scholar 

  • Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37:233–247

    Article  CAS  PubMed  Google Scholar 

  • Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30:203–214

    Article  CAS  PubMed  Google Scholar 

  • Hill EL, Gallopin T, Férézou I, Cauli B, Rossier J, Schweitzer P, Lambolez B (2007) Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons. J Neurophysiol 97:2580–2589

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Foote SL, Bloom FE (1978) Differential projections of neurons within the dorsal raphe nucleus of the rat: a horseradish peroxidase (HRP) study. Brain Res 147:149–153

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11:417–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MD (1994) Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442

    Article  CAS  PubMed  Google Scholar 

  • Johnson MD, Yee AG (1995) Ultrastructure of electrophysiologically-characterized synapses formed by serotonergic raphe neurons in culture. Neuroscience 67:609–623

    Article  CAS  PubMed  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Measur 20:141–151

    Article  Google Scholar 

  • Karagiannis A, Gallopin T, Dávid C, Battaglia D, Geoffroy H, Rossier J, Hillman EMC, Staiger JF, Cauli B (2009) Classification of NPY-expressing neocortical interneurons. J Neurosci 29:3642–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiyasova V, Fernandez SP, Laine J, Stankovski L, Muzerelle A, Doly S, Gaspar P (2011) A genetically defined morphologically and functionally unique subset of 5-HT neurons in the mouse raphe nuclei. J Neurosci 31:2756–2768

    Article  CAS  PubMed  Google Scholar 

  • Kiyasova V, Bonnavion P, Scotto-Lomassese S, Fabre V, Sahly I, Tronche F, Deneris E, Gaspar P, Fernandez SP (2013) A subpopulation of serotonergic neurons that do not express the 5-HT1A autoreceptor. ACS Chem Neurosci 4:89–95

    Article  CAS  PubMed  Google Scholar 

  • Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 103:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7:951–975

    Article  PubMed  Google Scholar 

  • Lacoste B, Riad M, Descarries L (2006) Immunocytochemical evidence for the existence of substance P receptor (NK1) in serotonin neurons of rat and mouse dorsal raphe nucleus. Eur J Neurosci 23:2947–2958

    Article  PubMed  Google Scholar 

  • Lammel S, Hetzel A, Häckel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  CAS  PubMed  Google Scholar 

  • Larm JA, Shen P-J, Gundlach AL (2003) Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphé nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmission. Eur J Neurosci 17:481–493

    Article  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhou J, Li Y, Hu F, Lu Y, Ma M, Feng Q, Zhang J-E, Wang D, Zeng J, Bao J, Kim J-Y, Chen Z-F, El Mestikawy S, Luo M (2014) Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81:1360–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913

    Article  CAS  PubMed  Google Scholar 

  • McQuade R, Sharp T (1995) Release of cerebral 5-hydroxytryptamine evoked by electrical stimulation of the dorsal and median raphe nuclei: effect of a neurotoxic amphetamine. Neuroscience 68:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Melander T, Hökfelt T, Rökaeus A, Cuello AC, Oertel WH, Verhofstad A, Goldstein M (1986) Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and neuropeptides in the rat CNS. J Neurosci 6:3640–3654

    CAS  PubMed  Google Scholar 

  • Miyazaki K, Miyazaki KW, Doya K (2011) Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J Neurosci 31:469–479

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Miyazaki KW, Doya K (2012) The role of serotonin in the regulation of patience and impulsivity. Mol Neurobiol 45:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molliver ME (1987) Serotonergic neuronal systems: what their anatomic organization tells us about function. J Clin Psychopharmacol 7:3S–23S

    Article  CAS  PubMed  Google Scholar 

  • Muzerelle A, Scotto-Lomassese S, Bernard JF, Soiza-Reilly M, Gaspar P (2014) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct 1–27. doi:10.1007/s00429-014-0924-4

  • Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M (2014) Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 8:1105–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollak Dorocic I, Fürth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlén M, Meletis K (2014) A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83:663–678

    Article  CAS  PubMed  Google Scholar 

  • Ranade SP, Mainen ZF (2009) Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J Neurophysiol 102:3026–3037

    Article  PubMed  Google Scholar 

  • Schäfer MK-H, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  • Schweimer JV, Ungless MA (2010) Phasic responses in dorsal raphe serotonin neurons to noxious stimuli. Neuroscience 171:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW, Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102:16472–16477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson KL, Waterhouse BD, Lin RCS (2003) Differential expression of nitric oxide in serotonergic projection neurons: neurochemical identification of dorsal raphe inputs to rodent trigeminal somatosensory targets. J Comp Neurol 466:495–512

    Article  PubMed  Google Scholar 

  • Soiza-Reilly M, Commons KG (2014) Unraveling the architecture of the dorsal raphe synaptic neuropil using high-resolution neuroanatomy. Front Neural Circuits 8:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Sousa VH, Miyoshi G, Hjerling-Leffler J, Karayannis T, Fishell G (2009) Characterization of Nk6–2-derived neocortical interneuron lineages. Cereb Cortex 19(Suppl 1):i1–i10

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaethling JM, Piel D, Dueck H, Buckley PT, Morris JF, Fisher SA, Lee J, Sul J-Y, Kim J, Bartfai T, Beck SG, Eberwine JH (2014) Serotonergic neuron regulation informed by in vivo single-cell transcriptomics. FASEB J 28:771–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorndike RL (1953) Who belongs in the family. Psychometrika 18:267–276

    Article  Google Scholar 

  • Toutenburg H (1971) Fisher, R. A., and F. Yates: Statistical tables for biological, agricultural and medical research. 6th Ed. Oliver & Boyd, Edinburgh and London 1963. X, 146 P. Preis 42 s net. Biometrische Zeitschrift 13:285

    Article  Google Scholar 

  • Trulson ME, Frederickson CJ (1987) A comparison of the electrophysiological and pharmacological properties of serotonin-containing neurons in the nucleus raphe dorsalis, raphe medianus and raphe pallidus recorded from mouse brain slices in vitro: role of autoreceptors. Brain Res Bull 18:179–190

    Article  CAS  PubMed  Google Scholar 

  • Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289:109–119

    Article  CAS  PubMed  Google Scholar 

  • Varga V, Losonczy A, Zemelman BV, Borhegyi Z, Nyiri G, Domonkos A, Hangya B, Holderith N, Magee JC, Freund TF (2009) Fast synaptic subcortical control of hippocampal circuits. Science 326:449–453

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Crane AM (1997) Distribution, quantification, and morphological characteristics of serotonin-immunoreactive cells of the supralemniscal nucleus (B9) and pontomesencephalic reticular formation in the rat. J Comp Neurol 378:411–424

    Article  CAS  PubMed  Google Scholar 

  • Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407:555–582

    Article  CAS  PubMed  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Waselus M, Valentino RJ, Van Bockstaele EJ (2011) Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J Chem Neuroanat 41:266–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L (2014) Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83:645–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wylie CJ, Hendricks TJ, Zhang B, Wang L, Lu P, Leahy P, Fox S, Maeno H, Deneris ES (2010) Distinct transcriptomes define rostral and caudal serotonin neurons. J Neurosci 30:670–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by INSERM, the University Pierre et Marie Curie, the European Commission (FP7-health-2007-A-201714), The Fondation pour la Recherche Medicale (equipe FRM to PG) and the Agence Nationale pour la recherche (ANR605-neur-046 and ANR 2011 MALZ 003 01). SPF received a Fellowship from the Fondation pour la Recherche Medicale. The teams of PG and JCP are part of the Ecole de Neuroscience de Paris (ENP) training network and Labex Bio-Psy (Investissement d’Avenir, ANR). We thank Evan Deneris and Gord Fishell for providing the founders of ePet1-Cre and RCE:LoxP mouse lines. Sophie Scotto-Lomassese is acknowledged for help with confocal microscopy and Emma Martinelli and Mariano Soiza-Reilly for their helpful comments on the manuscript. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Pablo Fernandez or Patricia Gaspar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2015_1142_MOESM1_ESM.tif

Figure S1. A mixture of red and green retrobeads was injected into the mPFC. Both tracer solutions have a similar diffusion pattern, and therefore target a similar tissue volume, as shown in the injection site photos taken in the mPFC. All retrogradely filled cells were found to contain both tracers, suggesting that individual axons are capable of incorporating multiple tracers, and indicating that the small number of co-labelled cells found in the study is not the result of an experimental artifact. (TIFF 518 kb)

429_2015_1142_MOESM2_ESM.tif

Figure S2. Co-localization of 5-HT and GFP in the raphe of Pet1-EGFP mice. A) Strong expression of GFP was detected across all subfield of the raphe nuclei, and co-localized with 5-HT immunoreactivity. B) high magnification confocal images showing co-localization between GFP and 5-HT in Pet1-EGFP mice raphe. Scale bar = 15 µm. (TIFF 985 kb)

Supplementary material 3 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, S.P., Cauli, B., Cabezas, C. et al. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct Funct 221, 4007–4025 (2016). https://doi.org/10.1007/s00429-015-1142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1142-4

Keywords

Navigation