Skip to main content
Log in

Early postnatal stress suppresses the developmental trajectory of hippocampal pyramidal neurons: the role of CRHR1

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Adverse experiences early in life hamper the development and maturation of the hippocampus, but how early-life stress perturbs the developmental trajectory of the hippocampus across various life stages and the underlying molecular mechanisms remain to be investigated. In this study, we stressed male mice from postnatal day 2 (P2) to P9, and examined the potential role of CRHR1 in postnatal stress-induced structural remodeling of hippocampal CA3 pyramidal neurons directly after stress (P9), in mid-adolescence (P35) and in adulthood (P90). We found that early-life stress exposure significantly reduced apical dendritic arborization and spine density in CA3 neurons on P9 and P90. Moreover, postnatally stressed neurons underwent increased pruning of spines, especially thin spines, between P35 and P90. These stress-induced immediate and long-term structural abnormalities could be abolished by daily systemic administration of the CRHR1 antagonist antalarmin (20 µg/g of body weight) during stress exposure. However, such treatment strategy failed to attenuate the deleterious stress effects in mid-adolescence on P35. We then extended antalarmin treatment until the end of the second postnatal week, and found that prolonged blockade of CRHR1 could prevent the mid-term impact of early postnatal stress on structural remodeling of CA3 neurons. Our study characterized the influences of early-life stress on the developmental trajectory of hippocampal pyramidal neurons, and highlighted the critical role of CRHR1 in modulating these negative outcomes evoked by early-life stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagot RC, van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joëls M (2009) Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol Learn Mem 92(3):292–300

    Article  PubMed  Google Scholar 

  • Brunson KL, Kramar E, Lin B, Chen Y, Colgin LL, Yanagihara TK, Lynch G, Baram TZ (2005) Mechanisms of late-onset cognitive decline after early-life stress. J Neurosci 25(41):9328–9338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champagne DL, Bagot RC, van Hasselt F, Ramakers G, Meaney MJ, de Kloet ER, Joëls M, Krugers H (2008) Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 28(23):6037–6045

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Baram TZ (2016) Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 41(1):197–206

    Article  PubMed  Google Scholar 

  • Chen Y, Dubé CM, Rice CJ, Baram TZ (2008) Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J Neurosci 28(11):2903–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Andres AL, Frotscher M, Baram TZ (2012) Tuning synaptic transmission in the hippocampus by stress: the CRH system. Front Cell Neurosci 6:13. doi:10.3389/fncel.2012.00013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Kramár EA, Chen LY, Babayan AH, Andres AL, Gall CM, Lynch G, Baram TZ (2013) Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Mol Psychiatry 18(4):485–496

    Article  CAS  PubMed  Google Scholar 

  • Conrad CD (2006) What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? Behav Cogn Neurosci Rev 5(1):41–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86(2):189–199

    Article  CAS  PubMed  Google Scholar 

  • Eiland L, McEwen BS (2012) Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus 22(1):82–91

    Article  PubMed  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser EM, Van der Loos H (1981) Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi-Nissl stain. J Neurosci Methods 4(2):117–125

    Article  CAS  PubMed  Google Scholar 

  • Griffin GD, Flanagan-Cato LM (2008) Estradiol and progesterone differentially regulate the dendritic arbor of neurons in the hypothalamic ventromedial nucleus of the female rat (Rattus norvegicus). J Comp Neurol 510(6):631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin GD, Ferri-Kolwicz SL, Reyes BA, Van Bockstaele EJ, Flanagan-Cato LM (2010) Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol 518(22):4531–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12(7):2685–2705

    CAS  PubMed  Google Scholar 

  • Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2(12):880–888

    Article  CAS  PubMed  Google Scholar 

  • Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647–658

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362(1):17–45

    Article  CAS  PubMed  Google Scholar 

  • Ivy AS, Rex CS, Chen Y, Dubé C, Maras PM, Grigoriadis DE, Gall CM, Lynch G, Baram TZ (2010) Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. J Neurosci 30(39):13005–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joëls M, Baram TZ (2009) The neuro-symphony of stress. Nat Rev Neurosci 10(6):459–466

    PubMed  PubMed Central  Google Scholar 

  • Li XG, Somogyi P, Ylinen A, Buzsáki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339(2):181–208

    Article  CAS  PubMed  Google Scholar 

  • Liao XM, Yang XD, Jia J, Li JT, Xie XM, Su YA, Schmidt MV, Si TM, Wang XD (2014) Blockade of corticotropin-releasing hormone receptor 1 attenuates early-life stress-induced synaptic abnormalities in the neonatal hippocampus. Hippocampus 24(5):528–540

    Article  CAS  PubMed  Google Scholar 

  • Lucassen PJ, Naninck EF, van Goudoever JB, Fitzsimons C, Joëls M, Korosi A (2013) Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 36(11):621–631

    Article  CAS  PubMed  Google Scholar 

  • Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10(6):434–445

    Article  CAS  PubMed  Google Scholar 

  • Maras PM, Baram TZ (2012) Sculpting the hippocampus from within: stress, spines, and CRH. Trends Neurosci 35(5):315–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick CM, Mathews IZ (2010) Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Prog Neuropsychopharmacol Biol Psychiatry 34(5):756–765

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Ferres-Torres R, Mas M (1978) The effects of puberty and castration on hippocampal dendritic spines of mice. A Golgi study. Brain Res 155(1):108–112

    Article  CAS  PubMed  Google Scholar 

  • Molet J, Maras PM, Avishai-Eliner S, Baram TZ (2014) Naturalistic rodent models of chronic early-life stress. Dev Psychobiol 56(8):1675–1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EM, Joëls M, Lucassen PJ, Krugers H (2010) Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci 30(19):6635–6645

    Article  CAS  PubMed  Google Scholar 

  • Pokorný J, Yamamoto T (1981) Postnatal ontogenesis of hippocampal CA1 area in rats. II. Development of ultrastructure in stratum lacunosum and moleculare. Brain Res Bull 7(2):121–130

    Article  PubMed  Google Scholar 

  • Regev L, Baram TZ (2014) Corticotropin releasing factor in neuroplasticity. Front Neuroendocrinol 35(2):171–179

    Article  CAS  PubMed  Google Scholar 

  • Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008) A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology 149(10):4892–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rissman RA, Staup MA, Lee AR, Justice NJ, Rice KC, Vale W, Sawchenko PE (2012) Corticotropin-releasing factor receptor-dependent effects of repeated stress on tau phosphorylation, solubility, and aggregation. Proc Natl Acad Sci USA 109(16):6277–6282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochefort NL, Konnerth A (2012) Dendritic spines: from structure to in vivo function. EMBO Rep 13(8):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropireddy D, Scorcioni R, Lasher B, Buzsáki G, Ascoli GA (2011) Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations. Brain Struct Funct 216(1):1–15

    Article  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221

    Article  CAS  PubMed  Google Scholar 

  • Wang XD, Rammes G, Kraev I, Wolf M, Liebl C, Scharf SH, Rice CJ, Wurst W, Holsboer F, Deussing JM, Baram TZ, Stewart MG, Müller MB, Schmidt MV (2011a) Forebrain CRF1 modulates early-life stress-programmed cognitive deficits. J Neurosci 31(38):13625–13634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, Harbich D, Mayer B, Wurst W, Holsboer F, Deussing JM, Baram TZ, Müller MB, Schmidt MV (2011b) Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis 42(3):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XD, Labermaier C, Holsboer F, Wurst W, Deussing JM, Müller MB, Schmidt MV (2012) Early-life stress-induced anxiety-related behavior in adult mice partially requires forebrain corticotropin-releasing hormone receptor 1. Eur J Neurosci 36(3):2360–2367

    Article  PubMed  Google Scholar 

  • Wang XD, Su YA, Wagner KV, Avrabos C, Scharf SH, Hartmann J, Wolf M, Liebl C, Kühne C, Wurst W, Holsboer F, Eder M, Deussing JM, Müller MB, Schmidt MV (2013) Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss. Nat Neurosci 16(6):706–713

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Hao J, Lacher RK, Abbott T, Chung L, Colangelo CM, Kaffman A (2015) Early-life stress perturbs key cellular programs in the developing mouse hippocampus. Dev Neurosci 37(6):476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West AE, Greenberg ME (2011) Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol 3(6):a005744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XD, Liao XM, Uribe-Mariño A, Liu R, Xie XM, Jia J, Su YA, Li JT, Schmidt MV, Wang XD, Si TM (2015) Stress during a critical postnatal period induces region-specific structural abnormalities and dysfunction of the prefrontal cortex via CRF1. Neuropsychopharmacology 40(5):1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Yildirim M, Mapp OM, Janssen WG, Yin W, Morrison JH, Gore AC (2008) Postpubertal decrease in hippocampal dendritic spines of female rats. Exp Neurol 210(2):339–348

    Article  PubMed  Google Scholar 

  • Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71(5):772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5(1):24–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mathias V. Schmidt (Max Planck Institute of Psychiatry) for discussion and critical reading of the manuscript, and thank Prof. Yi Rao and Dr. Xian Zhang (Peking University) for the use of the Neurolucida system. This work was supported by the National Natural Science Foundation of China (Grant Numbers 81171284, 81301152 and 81471369) and the Research Fund for the Doctoral Program of Higher Education of China (Number 20120001110046). All authors reported no biomedical financial interests or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Dong Wang or Tian-Mei Si.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Yang, XD., Liao, XM. et al. Early postnatal stress suppresses the developmental trajectory of hippocampal pyramidal neurons: the role of CRHR1. Brain Struct Funct 221, 4525–4536 (2016). https://doi.org/10.1007/s00429-016-1182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1182-4

Keywords

Navigation