Skip to main content
Log in

Neuropeptides in interneurons of the insect brain

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A large number of neuropeptides has been identified in the brain of insects. At least 35 neuropeptide precursor genes have been characterized in Drosophila melanogaster, some of which encode multiple peptides. Additional neuropeptides have been found in other insect species. With a few notable exceptions, most of the neuropeptides have been demonstrated in brain interneurons of various types. The products of each neuropeptide precursor seem to be co-expressed, and each precursor displays a unique neuronal distribution pattern. Commonly, each type of neuropeptide is localized to a relatively small number of neurons. We describe the distribution of neuropeptides in brain interneurons of a few well-studied insect species. Emphasis has been placed upon interneurons innervating specific brain areas, such as the optic lobes, accessory medulla, antennal lobes, central body, and mushroom bodies. The functional roles of some neuropeptides and their receptors have been investigated in D. melanogaster by molecular genetics techniques. In addition, behavioral and electrophysiological assays have addressed neuropeptide functions in the cockroach Leucophaea maderae. Thus, the involvement of brain neuropeptides in circadian clock function, olfactory processing, various aspects of feeding behavior, and learning and memory are highlighted in this review. Studies so far indicate that neuropeptides can play a multitude of functional roles in the brain and that even single neuropeptides are likely to be multifunctional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig 11

Similar content being viewed by others

References

  • Adams MD, Celniker SE, Holt RA, Evans CA, et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    PubMed  Google Scholar 

  • Agricola H, Bräunig P (1995) Comparative aspects of peptidergic signalling pathways in the nervous system of arthropods. In: Breidbach O, Kutsch W (eds) The nervous system of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 303–327

    Google Scholar 

  • Anton S, Homberg U (1999) Antennal lobe structure. In: Hansson BS (ed) Insect olfaction. Springer, Berlin Heidelberg New York, pp 97–124

    Google Scholar 

  • Baggerman G, Cerstiaens A, De Loof A, Schoofs L (2002) Peptidomics of the larval Drosophila melanogaster central nervous system. J Biol Chem 277:40368–40374

    PubMed  CAS  Google Scholar 

  • Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics.J Chromatogr B Analyt Technol Biomed Life Sci 803:3–16

    PubMed  CAS  Google Scholar 

  • Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L (2005) Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 40:250–260

    PubMed  CAS  Google Scholar 

  • Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    PubMed  CAS  Google Scholar 

  • Bicker G, Schäfer S, Ottersen OP, Storm-Mathisen J (1988) Glutamate-like immunoreactivity in identified neuronal populations of insect nervous systems. J Neurosci 8:2108–2122

    PubMed  CAS  Google Scholar 

  • Birse RT, Johnson EC, Taghert PH, Nässel DR (2006) Widely distributed Drosophila G-protein-coupled receptor (CG7887) is activated by endogenous tachykinin-related peptides. J Neurobiol 66:33–46

    PubMed  CAS  Google Scholar 

  • Bloch G, Solomon SM, Robinson GE, Fahrbach SE (2003) Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): age and time-related plasticity. J Comp Neurol 464:269–284

    PubMed  CAS  Google Scholar 

  • Bowser PR, Tobe SS (2005) Immunocytochemical analysis of putative allatostatin receptor (DAR-2) distribution in the CNS of larval Drosophila melanogaster. Peptides 26:81–87

    PubMed  CAS  Google Scholar 

  • Brezina V, Weiss KR (1997) Analyzing the functional consequences of transmitter complexity. Trends Neurosci 20:538–543

    PubMed  CAS  Google Scholar 

  • Brody T, Cravchik A (2000) Drosophila melanogaster G-protein-coupled receptors. J Cell Biol 150:F83–F88

    PubMed  CAS  Google Scholar 

  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E (2001) An evolutionary conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 11:213–221

    PubMed  CAS  Google Scholar 

  • Brown MR, Crim JW, Arata RC, Cai HN, Chun C, Shen P (1999) Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20:1035–1042

    PubMed  CAS  Google Scholar 

  • Burnstock G (2004) Cotransmission. Curr Opinion Pharmacol 4:47–52

    CAS  Google Scholar 

  • Cazzamali G, Torp M, Hauser F, Williamson M, Grimmelikhuijzen CJ (2005) The Drosophila gene CG9918 codes for a pyrokinin-1 receptor. Biochem Biophys Res Commun 335:14–19

    PubMed  CAS  Google Scholar 

  • Choi MY, Rafaeli A, Jurenka RA (2001) Pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Cell Tissue Res 306:459–465

    PubMed  CAS  Google Scholar 

  • Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J (2005) Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitam Horm 73:217–282

    PubMed  CAS  Google Scholar 

  • Coates D, Siviter R, Isaac RE (2000) Exploring the Caenorhabditis elegans and Drosophila melanogaster genomes to understand neuropeptide and peptidase function. Biochem Soc Trans 28:464–469

    PubMed  CAS  Google Scholar 

  • Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302

    PubMed  CAS  Google Scholar 

  • De Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689

    PubMed  Google Scholar 

  • De Jong-Brink M, Ter Maat A, Tensen CP (2001) NPY in invertebrates: molecular answers to altered functions during evolution. Peptides 22:309–315

    PubMed  Google Scholar 

  • Dircksen H, Homberg U (1995) Crustacean cardioactive peptide-immunoreactive neurons innervating brain neuropils, retrocerebral complex and stomatogastric nervous system of the locust, Locusta migratoria. Cell Tissue Res 279:495–515

    CAS  Google Scholar 

  • Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15

    PubMed  CAS  Google Scholar 

  • Eckert M, Predel R, Gundel M (1999) Periviscerokinin-like immunoreactivity in the nervous system of the American cockroach. Cell Tissue Res 295:159–170

    PubMed  CAS  Google Scholar 

  • Erber J, Schürmann F-W, Hartmann T (1989) FMRFamide in the bee brain: immunocytochemistry, behaviour and electrophysiology. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart, p 63

    Google Scholar 

  • Ewer J (2005) Behavioral actions of neuropeptides in invertebrates: insights from Drosophila. Horm Behav 48:418–429

    PubMed  CAS  Google Scholar 

  • Ewer J, Reynolds S (2002) Neuropeptide control of molting in insects. In: Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT (eds) Hormones, brain and behavior. Academic Press, San Diego, pp 1–92

    Google Scholar 

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232

    PubMed  CAS  Google Scholar 

  • Feany MB, Quinn WG (1995) A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869–873

    PubMed  CAS  Google Scholar 

  • Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Google Scholar 

  • Gäde G (1997) The explosion of structural information on insect neuropeptides. In: Herz W et al (eds) Progress in the chemistry of organic natural products. Springer, Berlin Heidelberg New York, pp 1–128

    Google Scholar 

  • Garczynski SF, Brown MR, Shen P, Murray TF, Crim JW (2002) Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23:773–780

    PubMed  CAS  Google Scholar 

  • Hall JC (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48:1–280

    PubMed  CAS  Google Scholar 

  • Hamasaka Y, Nässel DR (2006) Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J Comp Neurol 494:314–330

    PubMed  CAS  Google Scholar 

  • Hanesch U, Fischbach KF, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366

    Google Scholar 

  • Heilig M, Widerlov E (1995) Neurobiology and clinical aspects of neuropeptide Y. Crit Rev Neurobiol 9:115–136

    PubMed  CAS  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    PubMed  CAS  Google Scholar 

  • Helfrich-Förster C (1997) Development of pigment-dispersing hormone immunoreactive neurons in the nervous system of Drosophila melanogaster. J Comp Neurol 380:335–354

    PubMed  Google Scholar 

  • Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62:94–102

    PubMed  Google Scholar 

  • Helfrich-Förster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4:65–76

    PubMed  Google Scholar 

  • Helfrich-Förster C, Homberg U (1993) Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J Comp Neurol 337:177–190

    PubMed  Google Scholar 

  • Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    Article  PubMed  Google Scholar 

  • Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142

    PubMed  CAS  Google Scholar 

  • Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA, Cravchik A, Collins FH, Robertson HM, Zwiebel LJ (2002) G protein-coupled receptors in Anopheles gambiae. Science 298:176–178

    PubMed  CAS  Google Scholar 

  • Hofer S, Homberg U (2006) Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell Tissue Res (in press)

  • Hofer S, Dircksen H, Homberg U (2003) Involvement of a neuropeptide related to orcokinin in light entrainment of the circadian clock of the cockroach. In: Elsner N, Zimmermann H (eds) The neurosciences from basic research to therapy. Thieme, Stuttgart, pp 808–809

    Google Scholar 

  • Hofer S, Dircksen H, Tollbäck P, Homberg U (2005) Novel insect orcokinins: characterization and neuronal distribution in the brains of selected dicondylian insects. J Comp Neurol 490:57–71

    PubMed  CAS  Google Scholar 

  • Homberg U (1994) Distribution of neurotransmitters in the insect brain. Progress in Zoology, vol 40. Fischer, Stuttgart

    Google Scholar 

  • Homberg U (2002) Neurotransmitters and neuropeptides in the brain of the locust. Microsc Res Tech 56:189–2002

    PubMed  CAS  Google Scholar 

  • Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208

    PubMed  CAS  Google Scholar 

  • Homberg U, Prakash N (1996) Development of pigment-dispersing hormone-like immunoreactivity in the brain of the locust Schistocerca gregaria: comparison with immunostaining for urotensin I and Mas-allatotropin. Cell Tissue Res 285:127–139

    Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the sphinx moth Manduca sexta and colocalization with SCPB-, BPP-, and GABA-like immunoreactivity. Cell Tissue Res 259:401–419

    PubMed  CAS  Google Scholar 

  • Homberg U, Würden S, Dircksen H, Rao KR (1991) Comparative anatomy of pigment-dispersing hormone-immunoreactive neurons in the brain of orthopteroid insects. Cell Tissue Res 266:343–357

    Google Scholar 

  • Homberg U, Vitzthum H, Müller M, Binkle U (1999) Immunocytochemistry of GABA in the central complex of the locust Schistocerca gregaria: identification of immunoreactive neurons and colocalization with neuropeptides.J Comp Neurol 409:495–507

    PubMed  CAS  Google Scholar 

  • Homberg U, Reischig T, Stengl M (2003a) Neural organization of the circadian system of the cockroach Leucophaea maderae. Chronobiol Int 20:577–591

    PubMed  CAS  Google Scholar 

  • Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003b) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    PubMed  Google Scholar 

  • Homberg U, Brandl C, Clynen E, Schoofs L, Veenstra JA (2004) Mas-allatotropin/Lom-AG-myotropin immunostaining in the brain of the locust, Schistocerca gregaria. Cell Tissue Res 318:439–457

    PubMed  CAS  Google Scholar 

  • Hyun S, Lee Y, Hong ST, Bang S, Paik D, Kang J, Shin J, Lee J, Jeon K, Hwang S, Bae E, Kim J (2005) Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48:267–278

    PubMed  CAS  Google Scholar 

  • Isaac RE, Taylor CA, Hamasaka Y, Nässel DR, Shirras AD (2004) Proctolin in the post-genomic era: new insights and challenges. Invert Neurosci 5:51–64

    PubMed  CAS  Google Scholar 

  • Johnson EC, Garczynski SF, Park D, Crim JW, Nässel DR, Taghert PH (2003a) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci USA 100:6198–6203

    PubMed  CAS  Google Scholar 

  • Johnson EC, Bohn LM, Barak LS, Birse RT, Nässel DR, Caron MG, Taghert PH (2003b) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278:52172–52178

    PubMed  CAS  Google Scholar 

  • Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, Taghert PH (2005) A novel diuretic hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp Biol 208:1239–1246

    PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    PubMed  CAS  Google Scholar 

  • Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422:66–94

    PubMed  CAS  Google Scholar 

  • Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF (2003) Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi. Curr Biol 13:1715–1720

    PubMed  CAS  Google Scholar 

  • Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533

    PubMed  CAS  Google Scholar 

  • Kloppenburg P, Homberg U, Kühn U, Binkle U, Erber J (1990) Gastrin/CCK in the mushroom bodies of the honeybee: immunocytochemistry and behaviour. In: Elsner N, Roth G (eds) Gene—brain—behaviour. Thieme, Stuttgart, p 322

    Google Scholar 

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24:263–297

    PubMed  CAS  Google Scholar 

  • Lee KS, You KH, Choo JK, Han YM, Yu K (2004) Drosophila short neuropeptide F regulates food intake and body size. J Biol Chem 279:50781–50789

    PubMed  CAS  Google Scholar 

  • Lenz C, Williamson M, Hansen GN, Grimmelikhuijzen CJP (2001) Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2. Biochem Biophys Res Commun 286:1117–1122

    PubMed  CAS  Google Scholar 

  • Lin Y, Stormo GD, Taghert PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951–7957

    PubMed  CAS  Google Scholar 

  • Liu F, Baggerman G, D’Hertog W, Peter V, Schoofs L, Wets G (2005) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics (Epub)

  • Liu G, Seiler H, Wen Ai, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    PubMed  CAS  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    PubMed  Google Scholar 

  • Lu D, Lee KY, Horodyski FM, Witten JL (2002) Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 446:377–396

    PubMed  CAS  Google Scholar 

  • McCormick J, Nichols R (1993) Spatial and temporal expression identify drosomyosuppressin as a brain-gut peptide in Drosophila melanogaster. J Comp Neurol 338:279–288

    Google Scholar 

  • McNabb SL, Baker JD, Agapite J, Steller H, Riddiford LM, Truman JW (1999) Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron 19:813–823

    Google Scholar 

  • Mertens I, Vandingenen A, Johnson EC, Shafer OT, Li W, Trigg JS, De Loof A, Schoofs L, Taghert PH (2005) PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48:213–219

    PubMed  CAS  Google Scholar 

  • Meeusen T, Mertens I, De Loof A, Schoofs L (2003) G protein-coupled receptors in invertebrates: a state of the art.Int Rev Cytol 230:189–261

    Article  PubMed  CAS  Google Scholar 

  • Moore MS, DeZazzo J, Luk AY, Tully Y, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signalling pathway. Cell 93:997–1007

    PubMed  CAS  Google Scholar 

  • Muren JE, Lundquist CT, Nässel D (1995) Abundant distribution of locustatachykinin-like peptide in the nervous system and intestine of the cockroach Leucophaea maderae. Philos Trans R Soc Lond Biol 348:423–444

    PubMed  CAS  Google Scholar 

  • Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Progr Neurobiol 37:179–254

    Google Scholar 

  • Nässel DR (1993a) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29

    PubMed  Google Scholar 

  • Nässel DR (1993b) Insect myotropic peptides: differential distribution of locustatachykinin-and leucokinin-like immunoreactive neurons in the locust brain. Cell Tissue Res 274:27–40

    PubMed  Google Scholar 

  • Nässel DR (1999) Tachykinin-related peptides in invertebrates: a review. Peptides 20:141–158

    PubMed  Google Scholar 

  • Nässel DR (2002) Neuropeptides in the nervous system of Drosophila and other insects: multiple roles of neuromodulators and neurohormones. Progr Neurobiol 68:1–84

    Google Scholar 

  • Nässel DR, Taghert P (2005) Neuropeptides in invertebrates. Encyclopedia of Life Sciences. Wiley, http://www.els.net

  • Nässel DR, Ohlsson LG, Johansson KUI, Grimmelikhuijzen CJP (1988) Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide. Neuroscience 27:347–362

    PubMed  Google Scholar 

  • Nässel DR, Cantera R, Karlsson A (1992) Neurons in the cockroach nervous system reacting with antisera to the peptide leucokinin I. J Comp Neurol 322:45–67

    PubMed  Google Scholar 

  • Nässel DR, Shiga S, Mohrherr CJ, Rao R (1993) Pigment-dispersing hormone-like peptide in the nervous system of the flies Phormia and Drosophila: immunocytochemistry and partial characterization. J Comp Neurol 331:183–198

    PubMed  Google Scholar 

  • Nässel DR, Persson MGS, Muren JE (2000) Baratin, a nonamidated neurostimulating neuropeptide, isolated from cockroach brain: distribution and actions in the cockroach and locust nervous systems. J Comp Neurol 422:267–286

    PubMed  Google Scholar 

  • Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci USA 98:14000–14005

    PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    PubMed  CAS  Google Scholar 

  • Ohlsson LG, Johansson KUI, Nässel DR (1989) Postembryonic development of Arg-Phe-amide-like and cholecystokinin-like immunoreactive neurons in the blowfly optic lobe. Cell Tissue Res 256:199–211

    CAS  Google Scholar 

  • Okada R, Sakura M, Mizunami M (2003) Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain. J Comp Neurol 458:158–174

    PubMed  Google Scholar 

  • Park JH, Helfrich-Förster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613

    PubMed  CAS  Google Scholar 

  • Park JH, Schroeder AJ, Helfrich-Förster C, Jackson FR, Ewer J (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 130:2645–2656

    PubMed  CAS  Google Scholar 

  • Patel M, Chung JS, Kay I, Mallet AI, Gibbon CR, Thompson K, Bacon JP, Coast GM (1994) Localization of Locusta-DP in locust CNS and hemolymph satisfies initial hormonal criteria. Peptides 15:591–602

    PubMed  CAS  Google Scholar 

  • Petri B, Stengl M (1997) Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae. J Neurosci 17:4087–4093

    PubMed  CAS  Google Scholar 

  • Petri B, Stengl M, Würden S, Homberg U (1995) Immunocytochemical characterization of the accessory medulla in the cockroach Leucophaea maderae. Cell Tissue Res 282:3–19

    PubMed  CAS  Google Scholar 

  • Petri B, Homberg U, Loesel R, Stengl M (2002) Evidence for a role of GABA and Mas-allatotropin in photic entrainment of the circadian clock of the cockroach Leucophaea maderae. J Exp Biol 205:1459–1469

    PubMed  CAS  Google Scholar 

  • Predel R, Neupert S, Wicher D, Gundel M, Roth S, Derst C (2004a) Unique accumulation of neuropeptides in an insect: FMRFamide related peptides in the cockroach, Periplaneta americana. Eur J Neurosci 20:1499–1513

    PubMed  CAS  Google Scholar 

  • Predel R, Wegener C, Russell WK, Tichy SE, Russell DH, Nachman RJ (2004b) Peptidomics of CNS-associated neurohemal systems of adult Drosophila melanogaster: a mass spectrometric survey of peptides from individual flies. J Comp Neurol 474:379–392

    PubMed  CAS  Google Scholar 

  • Predel R, Neupert S, Roth S, Derst C, Nässel DR (2005) Tachykinin-related peptide precursors in two cockroach species. FEBS Lett 272:3365–3375

    CAS  Google Scholar 

  • Pyza E, Meinertzhagen IA (2003) The regulation of circadian rhythms in the fly’s visual system: involvement of FMRFamide-like neuropeptides and their relationship to pigment-dispersing factor in Musca domestica and Drosophila melanogaster. Neuropeptides 37:277–289

    PubMed  CAS  Google Scholar 

  • Radford JC, Davies SA, Dow JAT (2002) Systematic GPCR analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 277:38810–38817

    PubMed  CAS  Google Scholar 

  • Reischig T, Stengl M (2002) Optic lobe commissures in a three-dimensional brain model of the cockroach Leucophaea maderae: a search for the circadian coupling pathways. J Comp Neurol 443:388–400

    PubMed  Google Scholar 

  • Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    PubMed  Google Scholar 

  • Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802

    PubMed  CAS  Google Scholar 

  • Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298:172–175

    PubMed  CAS  Google Scholar 

  • Rosenkilde C, Cazzamali G, Williamson M, Hauser F, Sondergaard L, DeLotto R, Grimmelikhuijzen CJ (2003) Molecular cloning, functional expression, and gene silencing of two Drosophila receptors for the Drosophila neuropeptide pyrokinin-2. Biochem Biophys Res Commun 309:485–494

    PubMed  CAS  Google Scholar 

  • Saifullah ASM, Tomioka K (2003) Pigment-dispersing factor sets the night state of the medulla bilateral neurons in the optic lobe of the cricket, Gryllus bimaculatus. J Insect Physiol 49:231–239

    PubMed  CAS  Google Scholar 

  • Sato S, Chuman Y, Matsushima A, Tominaga Y, Shimonigashi Y, Shimonigashi M (2002) A circadian neuropeptide, pigment-dispersing factor-PDF, in the last-summer cicada Meimuna opalifera: cDNA cloning and immunocytochemistry. Zool Sci 19:821–828

    PubMed  CAS  Google Scholar 

  • Schachtner J, Trosowski B, D’Hanis W, Stubner S, Homberg U (2004) Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta. J Exp Biol 207:2389–2400

    PubMed  CAS  Google Scholar 

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea, Insecta). Arthropod Struct Devel 34:257–299

    Google Scholar 

  • Schneider N-L, Stengl M (2005) Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. J Neurosci 25:5138–5147

    PubMed  CAS  Google Scholar 

  • Schoofs L, Veelaert D, Holman GM, Hayes TK, De Loof A (1994) Partial identification, synthesis and immunolocalization of locustamyoinhibin, the third myoinhibiting neuropeptide isolated from Locusta migratoria. Regul Pept 52:139–156

    PubMed  CAS  Google Scholar 

  • Schoofs L, Veelaert D, Vanden Broek J, De Loof A (1997) Peptides in the locusts, Locusta migratoria and Schistocerca gregaria. Peptides 18:145–156

    PubMed  CAS  Google Scholar 

  • Schürmann F-W, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honeybee (Apis mellifera). A light and electron microscopical study. Neuroscience 38:797–807

    PubMed  Google Scholar 

  • Sehadová H, Sauman I, Sehnal F (2003) Immunocytochemical distribution of pigment-dispersing hormone in the cephalic ganglia of polyneopteran insects. Cell Tissue Res 312:113–125

    PubMed  Google Scholar 

  • Settembrini BP, Nowicki S, Hökfelt T, Villar MJ (2003) Distribution of NPY and NPY-Y1 receptor-like immunoreactivities in the central nervous system of Triatoma infestans (Insects: Heteroptera). J Comp Neurol 460:141–154

    PubMed  CAS  Google Scholar 

  • Shen P, Cai HN (2001) Drosophila neuropeptide F mediates integration of chemosensory stimulation and conditioning of the nervous system by food. J Neurobiol 47:16–25

    PubMed  CAS  Google Scholar 

  • Sinakevitch I, Farris SM, Strausfeld NJ (2001) Taurine-, asparatate- and glutamate-like immunoreactivity identifies chemically distinct subdivisions of Kenyon cells in the cockroach mushroom body. J Comp Neurol 439:352–367

    PubMed  CAS  Google Scholar 

  • Singaravel M, Fujisawa Y, Hisada M, Saifullah ASM, Tomioka K (2003) Phase shifts of the circadian locomotor rythms induced by pigment-dispersing factor in the cricket Gryllus bimaculatus. Zool Sci 20:1347–1354

    PubMed  CAS  Google Scholar 

  • Siviter RJ, Coast GM, Winther ÅME, Nachman RJ, Taylor CAM, Shirras AD, Coates D, Isaac RE, Nässel DR (2000) Expression and functional characterisation of a Drosophila neuropeptide precursor with homology to mammalian preprotachykinin A. J Biol Chem 275:23273–23280

    PubMed  CAS  Google Scholar 

  • Stanewsky R (2003) Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J Neurobiol 54:111–147

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Homberg U, Kloppenburg P (2000) Parallel organization in honey bee mushroom bodies by peptidergic Kenyon cells. J Comp Neurol 424:179–195

    PubMed  CAS  Google Scholar 

  • Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    PubMed  CAS  Google Scholar 

  • Taghert PH, Veenstra JA (2003) Drosophila neuropeptide signaling. Adv Genet 49:1–65

    Article  PubMed  CAS  Google Scholar 

  • Taghert PH, Roberts ME, Penn SCP, Jacobs PS (2000) Metamorphosis of tangential visual system neurons in Drosophila. Dev Biol 222:471–485

    PubMed  CAS  Google Scholar 

  • Taghert PH, Hewes RS, Park JH, O’Brien MA, Han M, Peck ME (2001) Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila. J Neurosci 21:6673–6686

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Yasuda A, Yasuda-Kamatani Y, Suwata M, Matsuo Y, Kato A, Tsujimoto A, Nakajima T, Kubo T (2004) Prepro-tachykinin gene expression in the brain of the honeybee Apis mellifera. Cell Tissue Res 316:281–293

    PubMed  CAS  Google Scholar 

  • Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, Saitoe M (2003) Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40:1003–1011

    PubMed  CAS  Google Scholar 

  • Tips A, Schoofs, L, Paemen L, Ma M, Blackburn M, Raina A, De Loof A (1993) Co-localization of locustamyotropin- and pheromone biosynthesis activating neuropeptide-like immunoreactivity in the central nervous system of five insect species. Comp Biochem Physiol 106A:195–207

    CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277

    CAS  Google Scholar 

  • Utz S, Schachtner J (2005) Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta. Cell Tissue Res 320:149–162

    PubMed  CAS  Google Scholar 

  • Vanden Broeck J (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22:241–254

    Google Scholar 

  • Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch Insect Biochem Physiol 43:49–63

    PubMed  CAS  Google Scholar 

  • Verleyen P, Huybrechts J, Baggerman G, Van Lommel A, De Loof A, Schoofs L (2004) SIFamide is a highly conserved neuropeptide: a comparative study in different insect species. Biochem Biophys Res Commun 320:334–341

    PubMed  CAS  Google Scholar 

  • Vitzthum H, Homberg U (1998) Immunocytochemical demonstration of locustatachykinin-related peptides in the central complex of the locust brain. J Comp Neurol 390:455–469

    PubMed  CAS  Google Scholar 

  • Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol 369:419–437

    PubMed  CAS  Google Scholar 

  • Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–813

    PubMed  CAS  Google Scholar 

  • Wen T, Parrish CA, Xu D, Wu Q, Shen P (2005) Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA 102:2141–2146

    PubMed  CAS  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool (Lond) 76:67–86

    Article  Google Scholar 

  • Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079

    PubMed  CAS  Google Scholar 

  • Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370

    PubMed  CAS  Google Scholar 

  • Winther ÅM, Siviter RJ, Isaac RE, Predel R, Nässel DR (2003) Neuronal expression of tachykinin-related peptides and gene transcript during postembryonic development of Drosophila. J Comp Neurol 464:180–196

    PubMed  CAS  Google Scholar 

  • Winther ÅM, Acebes A, Ferrus A (2006) Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 31:399–406

    PubMed  CAS  Google Scholar 

  • Wu Q, Brown MR (2006) Signaling and function of insulin-like peptides in insects. Annu Rev Entomol 51:1–24

    PubMed  CAS  Google Scholar 

  • Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P (2003) Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39:147–161

    PubMed  CAS  Google Scholar 

  • Wu Q, Zhao Z, Shen P (2005a) Regulation of aversion to noxious food by Drosophila neuropeptide Y-and insulin-like systems. Nature Neurosci 8: 1350–1355

    PubMed  CAS  Google Scholar 

  • Wu Q, Zhang Y, Xu J, Shen P (2005b) Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. Proc Natl Acad Sci USA 102:13289–13294

    PubMed  CAS  Google Scholar 

  • Würden S, Homberg U (1995) Immunocytochemical mapping of serotonin and neuropeptides in the accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 362:305–319

    PubMed  Google Scholar 

  • Yasuyama K, Meinertzhagen IA, Schürmann F-W (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226

    PubMed  Google Scholar 

  • Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL (2005) Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–957

    PubMed  CAS  Google Scholar 

  • Závodská R, Sauman I, Sehnal F (2003) Distribution of PER protein, pigment-dispersing hormone, prothoracicotropic hormone, and eclosion hormone in the cephalic nervous system of insects. J Biol Rhythms 18:106–122

    PubMed  Google Scholar 

  • Zhong Y, Pena LA (1995) A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron 14:527–536

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Charlotte Helfrich-Förster (University of Regensburg, Germany), Ping Shen (University of Georgia, Athens, Ga.), and various publishers for permission to use Figs. 9 and 11a. We are grateful to Thomas Reischig for providing Fig. 2d and to Joachim Schachtner for providing Fig. 7a. Previously unpublished immunostaining was performed with antisera kindly donated by H. Agricola, H. Dircksen, M. Eckert, K. Lederis, E. Marder, J. Veenstra, and W.H. Watson III. Colleagues in Stockholm and Marburg are gratefully acknowledged for contributions to original research presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dick R. Nässel.

Additional information

The original research in the authors’ laboratories was supported by DFG grants HO 950/14 and 950/16 (U.H.) and Swedish Research Council grant VR 621-2004-3715 (D.R.N).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nässel, D.R., Homberg, U. Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326, 1–24 (2006). https://doi.org/10.1007/s00441-006-0210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0210-8

Keywords

Navigation