Skip to main content

Advertisement

Log in

The genetics of synapse formation and function in Caenorhabditis elegans

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The aim of this review is to introduce the reader to Caenorhabditis elegans as a model system, especially with respect to studies of synapse formation and function. We begin by giving a short description of the structure of the nervous system of C. elegans. As most of the findings that are reviewed here have emerged from studies of neuromuscular junctions (NMJs), two prominent NMJs of C. elegans will be outlined briefly. In addition, we summarize new findings that have added to our understanding of NMJs during the last few years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackley BD, Jin Y (2004) Genetic analysis of synaptic target recognition and assembly. Trends Neurosci 27:540–547

    Article  PubMed  CAS  Google Scholar 

  • Ackley BD, Harrington RJ, Hudson ML, Williams L, Kenyon CJ, Chisholm AD, Jin Y (2005) The two isoforms of the Caenorhabditis elegans leukocyte-common antigen related receptor tyrosine phosphatase PTP-3 function independently in axon guidance and synapse formation. J Neurosci 25:7517–7528

    Article  PubMed  CAS  Google Scholar 

  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260

    Article  PubMed  CAS  Google Scholar 

  • Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci 23:8060–8069

    PubMed  CAS  Google Scholar 

  • Bastiani CA, Gharib S, Simon MI, Sternberg PW (2003) Caenorhabditis elegans Galphaq regulates egg-laying behavior via a PLCbeta-independent and serotonin-dependent signaling pathway and likely functions both in the nervous system and in muscle. Genetics 165:1805–1822

    PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Briese M, Esmaeili B, Johnson NM, Sattelle DB (2006) pWormgatePro enables promoter-driven knockdown by hairpin RNA interference of muscle and neuronal gene products in Caenorhabditis elegans. Invert Neurosci 6:5–12

    Article  PubMed  CAS  Google Scholar 

  • Brundage L, Avery L, Katz A, Kim UJ, Mendel JE, Sternberg PW, Simon MI (1996) Mutations in a C. elegans Gqalpha gene disrupt movement, egg laying, and viability. Neuron 16:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38:389–401

    Article  PubMed  CAS  Google Scholar 

  • Carnell L, Illi J, Hong SW, McIntire SL (2005) The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 25:10671–10681

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, White JG (1988) The nervous system. In: Wood WB (ed) The Nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 337–391

    Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Adler CE, Krause M, Clark SG, Gertler FB, Tessier-Lavigne M, Bargmann CI (2006) MIG-10/lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr Biol 16:854–862

    Article  PubMed  CAS  Google Scholar 

  • Charlie NK, Schade MA, Thomure AM, Miller KG (2006a) Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Genetics 172:943–961

    Article  PubMed  CAS  Google Scholar 

  • Charlie NK, Thomure AM, Schade MA, Miller KG (2006b) The dunce cAMP phosphodiesterase PDE-4 negatively regulates G{alpha}s-dependent and G{alpha}s-independent cAMP pools in the C. elegans synaptic signaling network. Genetics 173(1):111–130

    Article  CAS  Google Scholar 

  • Charron F, Tessier-Lavigne M (2005) Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Charron F, Stein E, Jeong J, McMahon AP, Tessier-Lavigne M (2003) The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113:11–23

    Article  PubMed  CAS  Google Scholar 

  • Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103:4723–4728

    Article  PubMed  CAS  Google Scholar 

  • Chin-Sang ID, George SE, Ding M, Moseley SL, Lynch AS, Chisholm AD (1999) The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 99:781–790

    Article  PubMed  CAS  Google Scholar 

  • Chin-Sang ID, Moseley SL, Ding M, Harrington RJ, George SE, Chisholm AD (2002) The divergent C. elegans ephrin EFN-4 functions in embryonic morphogenesis in a pathway independent of the VAB-1 Eph receptor. Development 129:5499–5510

    Article  PubMed  CAS  Google Scholar 

  • Chisholm AD, Jin Y (2005) Neuronal differentiation in C. elegans. Curr Opin Cell Biol 17:682–689

    Article  PubMed  CAS  Google Scholar 

  • Crump JG, Zhen M, Jin Y, Bargmann CI (2001) The SAD-1 kinase regulates presynaptic vesicle clustering and axon termination. Neuron 29:115–129

    Article  PubMed  CAS  Google Scholar 

  • Dempsey CM, Mackenzie SM, Gargus A, Blanco G, Sze JY (2005) Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behaviorn. Genetics 169:1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Dalpe G, Zhang LW, Zheng H, Culotti JG (2004) Conversion of cell movement responses to semaphorin-1 and plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development 131:2073–2088

    Article  PubMed  CAS  Google Scholar 

  • Dalpe G, Brown L, Culotti JG (2005) Vulva morphogenesis involves attraction of plexin 1-expressing primordial vulva cells to semaphorin 1a sequentially expressed at the vulva midline. Development 132:1387–1400

    Article  PubMed  CAS  Google Scholar 

  • Desai C, Garriga G, McIntire SL, Horvitz HR (1988) A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature 336:638–646

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ, Keleman K (2002) Netrins Curr Biol 12:R154–R155

    Article  CAS  Google Scholar 

  • Duerr JS, Gaskin J, Rand JB (2001) Identified neurons in C. elegans coexpress vesicular transporters for acetylcholine and monoamines. Am J Physiol Cell Physiol 280:C1616–C1622

    PubMed  CAS  Google Scholar 

  • Durbin RM (1987) Studies on the development and organisation of the nervous system of Caenorhabditis elegans. PhD thesis, University of Freiburg

  • Feng Z, Cronin CJ, Wittig JH Jr, Sternberg PW, Schafer WR (2004) An imaging system for standardized quantitative analysis of C. elegans behavior. BMC Bioinformatics 5:115

    Article  PubMed  Google Scholar 

  • Francis MM, Mellem JE, Maricq AV (2003) Bridging the gap between genes and behavior: recent advances in the electrophysiological analysis of neural function in Caenorhabditis elegans. Trends Neurosci 26:90–99

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk A, Schafer WR (2006) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154(1–2):68–79

    Article  PubMed  CAS  Google Scholar 

  • Hajdu-Cronin YM, Chen WJ, Patikoglou G, Koelle MR, Sternberg PW (1999) Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Genes Dev 13:1780–1793

    Article  PubMed  CAS  Google Scholar 

  • Hao JC, Yu TW, Fujisawa K, Culotti JG, Gengyo-Ando K, Mitani S, Moulder G, Barstead R, Tessier-Lavigne M, Bargmann CI (2001) C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32:25–38

    Article  PubMed  CAS  Google Scholar 

  • Hardaker LA, Singer E, Kerr R, Zhou G, Schafer WR (2001) Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol 49:303–313

    Article  PubMed  CAS  Google Scholar 

  • Hobert O, D’Alberti T, Liu Y, Ruvkun G (1998) Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J Neurosci 18:2084–2096

    PubMed  CAS  Google Scholar 

  • Hobson RJ, Hapiak VM, Xiao H, Buehrer KL, Komuniecki PR, Komuniecki RW (2006) SER-7, a Caenorhabditis elegans 5-HT7-like receptor, is essential for the 5-HT stimulation of pharyngeal pumping and egg laying. Genetics 172:159–169

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C, Sulston JE, Evans PD (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Hutter H (2003) Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans. Development 130:5307–5318

    Article  PubMed  CAS  Google Scholar 

  • Hutter H, Wacker I, Schmid C, Hedgecock EM (2005) Novel genes controlling ventral cord asymmetry and navigation of pioneer axons in C. elegans. Dev Biol 284:260–272

    Article  PubMed  CAS  Google Scholar 

  • Itoh B, Hirose T, Takata N, Nishiwaki K, Koga M, Ohshima Y, Okada M (2005) SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132:5161–5172

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki K, Toyonaga R (2000) The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO J 19:4806–4816

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH (1997) Aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron 18:613–622

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Emmons SW (2006) Genes that control ray sensory neuron axon development in the C. elegans male. Genetics DOI 10.1534/genetics.106.057000

  • Jin Y, Hoskins R, Horvitz HR (1994) Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372:780–783

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Li C (2004) Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. J Comp Neurol 475:540–550

    Article  PubMed  CAS  Google Scholar 

  • Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84:115–125

    Article  PubMed  CAS  Google Scholar 

  • Kohn RE, Duerr JS, McManus JR, Duke A, Rakow TL, Maruyama H, Moulder G, Maruyama IN, Barstead RJ, Rand JB (2000) Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol Biol Cell 11:3441–3452

    PubMed  CAS  Google Scholar 

  • Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24:335–346

    Article  PubMed  CAS  Google Scholar 

  • Lee G (2005) Tau and src family tyrosine kinases. Biochim Biophys Acta 1739:323–330

    PubMed  CAS  Google Scholar 

  • Lee RY, Sawin ER, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–167

    PubMed  CAS  Google Scholar 

  • Lewis JA, Wu CH, Levine JH, Berg H (1980) Levamisole-resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors. Neuroscience 5:967–989

    Article  PubMed  CAS  Google Scholar 

  • Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131 (Suppl):S109–S127

    PubMed  CAS  Google Scholar 

  • Lim YS, Wadsworth WG (2002) Identification of domains of netrin UNC-6 that mediate attractive and repulsive guidance and responses from cells and growth cones. J Neurosci 22:7080–7087

    PubMed  CAS  Google Scholar 

  • Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, Zou Y (2005) Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci 8:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Madison JM, Nurrish S, Kaplan JM (2005) UNC-13 interaction with syntaxin is required for synaptic transmission. Curr Biol 15:2236–2242

    Article  PubMed  CAS  Google Scholar 

  • Mahoney TR, Liu Q, Itoh T, Luo S, Hadwiger G, Vincent R, Wang ZW, Fukuda M, Nonet ML (2006) Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol Biol Cell 6:2617–2625

    Article  CAS  Google Scholar 

  • Maruyama IN, Brenner S (1991) A phorbol ester/diacylglycerol-binding protein encoded by the UNC-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci USA 88:5729–5733

    Article  PubMed  CAS  Google Scholar 

  • McIntire SL, Jorgensen E, Kaplan J, Horvitz HR (1993) The GABAergic nervous system of Caenorhabditis elegans. Nature 364:337–341

    Article  PubMed  CAS  Google Scholar 

  • McMullan R, Hiley E, Morrison P, Nurrish SJ (2006) Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C. elegans. Genes Dev 20:65–76

    Article  PubMed  CAS  Google Scholar 

  • Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH, Sternberg PW (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans. Science 267:1652–1655

    Article  PubMed  CAS  Google Scholar 

  • Merz DC, Alves G, Kawano T, Zheng H, Culotti JG (2003) UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev Biol 256:173–186

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Emerson MD, McManus JR, Rand JB (2000) RIC-8 (synembryn): a novel conserved protein that is required for G(q)alpha signaling in the C. elegans nervous system. Neuron 27:289–299

    Article  PubMed  CAS  Google Scholar 

  • Miller KG, Emerson MD, Rand JB (1999) Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron 24:323–333

    Article  PubMed  CAS  Google Scholar 

  • Mohamed AM, Chin-Sang ID (2006) Characterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. elegans axon targeting and cell migration. Dev Biol 290:164–176

    Article  PubMed  CAS  Google Scholar 

  • Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A (2005) Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr Biol 15:2279–2284

    Article  PubMed  CAS  Google Scholar 

  • Nguyen M, Alfonso A, Johnson CD, Rand JB (1995) Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics 140:527–535

    PubMed  CAS  Google Scholar 

  • Nonet ML, Staunton JE, Kilgard MP, Fergestad T, Hartwieg E, Horvitz HR, Jorgensen EM, Meyer BJ (1997) Caenorhabditis elegans RAB-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J Neurosci 17:8061–8073

    PubMed  CAS  Google Scholar 

  • Nonet ML, Saifee O, Zhao H, Rand JB, Wei L (1998) Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. J Neurosci 18:70–80

    PubMed  CAS  Google Scholar 

  • Nurrish S, Ségalat L, Kaplan JM (1999) Serotonin inhibition of synaptic transmission: Galpha(0) decreases the abundance of UNC-13 at release sites. Neuron 24:231–242

    Article  PubMed  CAS  Google Scholar 

  • Pan CL, Howell JE, Clark SG, Hilliard M, Cordes S, Bargmann CI, Garriga G (2006) Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Dev Cell 10:367–377

    Article  PubMed  CAS  Google Scholar 

  • Prasad BC, Clark SG (2006) Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development 133:1757–1766

    Article  PubMed  CAS  Google Scholar 

  • Quinn CC, Pfeil DS, Chen E, Stovall EL, Harden MV, Gavin MK, Forrester WC, Ryder EF, Soto MC, Wadsworth WG (2006) UNC-6/netrin and SLT-1/slit guidance cues orient axon outgrowth mediated by MIG-10/RIAM/Lamellipodin. Curr Biol 16:845–853

    Article  PubMed  CAS  Google Scholar 

  • Rand JB, Nonet ML (1997) Synaptic transmission. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JR (ed) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 611–644

    Google Scholar 

  • Reynolds NK, Schade MA, Miller KG (2005) Convergent, RIC-8-dependent Galpha signaling pathways in the Caenorhabditis elegans synaptic signaling network. Genet 169:651–670

    Article  CAS  Google Scholar 

  • Richmond JE, Davis WS, Jorgensen EM (1999) UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat Neurosci 2:959–964

    Article  PubMed  CAS  Google Scholar 

  • Richmond JE, Weimer RM, Jorgensen EM (2001) An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–341

    Article  PubMed  CAS  Google Scholar 

  • Runko E, Kaprielian Z (2004) Caenorhabditis elegans VEM-1, a novel membrane protein, regulates the guidance of ventral nerve cord-associated axons. J Neurosci 24:9015–9026

    Article  PubMed  CAS  Google Scholar 

  • Saifee O, Wei L, Nonet ML (1998) The Caenorhabditis elegans UNC-64 locus encodes a syntaxin that interacts genetically with synaptobrevin. Mol Biol Cell 9:1235–1252

    PubMed  CAS  Google Scholar 

  • Sandoval GM, Duerr JS, Hodgkin J, Rand JB, Ruvkun G (2006) A genetic interaction between the vesicular acetylcholine transporter VAChT/UNC-17 and synaptobrevin/SNB-1 in C. elegans. Nat Neurosci 9:599–601

    Article  PubMed  CAS  Google Scholar 

  • Sarafi-Reinach TR, Melkman T, Hobert O, Sengupta P (2001) The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development 128:3269–3281

    PubMed  CAS  Google Scholar 

  • Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–631

    Article  PubMed  CAS  Google Scholar 

  • Schade MA, Reynolds NK, Dollins CM, Miller KG (2005) Mutations that rescue the paralysis of Caenorhabditis elegans ric-8 (synembryn) mutants activate the G alpha(s) pathway and define a third major branch of the synaptic signaling network. Genetics 169:631–649

    Article  PubMed  CAS  Google Scholar 

  • Schinkmann K, Li C (1992) Localization of FMRFamide-like peptides in Caenorhabditis elegans. J Comp Neurol 316:251–260

    Article  PubMed  CAS  Google Scholar 

  • Schlüter OM, Schmitz F, Jahn R, Rosenmund C, Sudhof TC (2004) A complete genetic analysis of neuronal Rab3 function. J Neurosci 24:6629–6637

    Article  PubMed  CAS  Google Scholar 

  • Schnorrer F, Dickson BJ (2004) Axon guidance: morphogens show the way. Curr Biol 14:R19–R21

    Article  PubMed  CAS  Google Scholar 

  • Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414

    Article  PubMed  CAS  Google Scholar 

  • Ségalat L, Elkes DA, Kaplan JM (1995) Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science 267:1648–1651

    Article  Google Scholar 

  • Serra-Pages C, Medley QG, Tang M, Hart A, Streuli M (1998) Liprins, a family of LAR transmembrane protein-tyrosine phosphatase-interacting proteins. J Biol Chem 273:15611–15620

    Article  PubMed  CAS  Google Scholar 

  • Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual JF, Hill DE, Vidal M, Ruvkun G, Kaplan JM (2005) Systematic analysis of genes required for synapse structure and function.Nature 436:510–517

    Article  PubMed  CAS  Google Scholar 

  • Shyn SI, Kerr R, Schafer WR (2003) Serotonin and Go modulate functional states of neurons and muscles controlling C. elegans egg-laying behavior. Curr Biol 13:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Staunton J, Ganetzky B, Nonet ML (2001) Rabphilin potentiates soluble N-ethylmaleimide sensitive factor attachment protein receptor function independently of rab3. J Neurosci 21:9255–9264

    PubMed  CAS  Google Scholar 

  • Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226

    Article  PubMed  CAS  Google Scholar 

  • Tavernarakis N, Wang SL, Dorovkov M, Ryazanov A, Driscoll M (2000) Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat Genet 24:180–183

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Killeen M, Steven R, Binns KL, Culotti J, Pawson TJ (2001) Netrin stimulates tyrosine phosphorylation of the UNC-5 family of netrin receptors and induces Shp2 binding to the RCM cytodomain. Biol Chem 276:40917–40925

    Article  CAS  Google Scholar 

  • Trent C, Tsuing N, Horvitz HR (1983) Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647

    PubMed  CAS  Google Scholar 

  • Wadsworth WG (2002) Moving around in a worm: netrin UNC-6 and circumferential axon guidance in C. elegans. Trends Neurosci 25:423–429

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Roy PJ, Holland SJ, Zhang LW, Culotti JG, Culotti T (1999) Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell 4:903–913

    Article  PubMed  CAS  Google Scholar 

  • Weimer RM, Richmond JE (2005) Synaptic vesicle docking: a putative role for the Munc18/Sec1 protein family. Curr Top Dev Biol 65:83–113

    Article  PubMed  CAS  Google Scholar 

  • Weimer RM, Richmond JE, Davis WS, Hadwiger G, Nonet ML, Jorgensen EM (2003) Defects in synaptic vesicle docking in UNC-18 mutants. Nat Neurosci 6:1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Weinshenker D, Garriga G, Thomas JH (1995) Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans. J Neurosci 15:6975–6985

    PubMed  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Biol 314:1–340

    Article  Google Scholar 

  • Wittenburg N, Eimer S, Lakowski B, Rohrig S, Rudolph C, Baumeister R (2000) Presenilin is required for proper morphology and function of neurons in C. elegans. Nature 406:306–309

    Article  PubMed  CAS  Google Scholar 

  • Yu TW, Hao JC, Lim W, Tessier-Lavigne M, Bargmann CI (2002) Shared receptors in axon guidance: SAX-3/Robo signals via UNC-34/Enabled and a netrin-independent UNC-40/DCC function. Nat Neurosci 5:1147–1154

    Article  CAS  Google Scholar 

  • Yurchenco PD, Wadsworth WG (2004) Assembly and tissue functions of early embryonic laminins and netrins. Curr Opin Cell Biol 16:572–579

    Article  PubMed  CAS  Google Scholar 

  • Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371–375

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully thank Wormatlas (http://www.wormatlas.org) for the kind permission to use their images in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Baumeister.

Additional information

Work at the Baumeister laboratory is supported by grants from the European Union (APOPIS), DFG1364/3-3, the Fonds der Chemischen Industrie and the “Qualitätsoffensive Programm” of the State of Baden-Württemberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, M., Schmidt, E. & Baumeister, R. The genetics of synapse formation and function in Caenorhabditis elegans . Cell Tissue Res 326, 273–285 (2006). https://doi.org/10.1007/s00441-006-0277-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-006-0277-2

Keywords

Navigation