Skip to main content
Log in

Spatiotemporal expression pattern of DsRedT3/CCK gene construct during postnatal development of myenteric plexus in transgenic mice

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cholecystokinin (CCK) is an early marker of both neuronal and endocrine cell lineages in the developing gastrointestinal tract. To determine the quantitative properties and the spatial distribution of the CCK-expressing myenteric neurones in early postnatal life, a transgenic mouse strain with a CCK promoter-driven red fluorescent protein (DsRedT3/CCK) was established. The cell-specific expression of DsRedT3/CCK was validated by in situ hybridization with a CCK antisense riboprobe and by in situ hybridization coupled with immunohistochemistry involving a monoclonal antibody to CCK. A gradual increase in the DsRedT3/CCK-expressing enteric neurones with clear regional differences was documented from birth until the suckling to weaning transition, in parallel with the period of rapid intestinal growth and functional maturation. To evaluate the proportion of myenteric neurones in which DsRedT3/CCK transgene expression was colocalized with the enteric neuronal marker peripherin, immunofluorescence techniques were applied. All DsRedT3/CCK neurones were peripherin-immunoreactive and the proportion of DsRedT3/CCK-expressing myenteric neurones in the duodenum was the highest after the third week of life, when the number of peripherin-immunoreactive myenteric neurones in this region had decreased. Nearly all of the DsRedT3/CCK-expressing neurones also expressed 5-hydroxytryptophan (5-HT). Thus, by utilizing a new transgenic mouse strain, we have demonstrated a small number of CCK-expressing myenteric neurones with a developmentally regulated spatiotemporal distribution. The coexistence of CCK and 5-HT in the majority of these neurones suggests their possible regulatory role in feeding at the suckling to weaning transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bagyánszki M, Torfs P, Krecsmarik M, Fekete E, Adriaensen D, Van Nassauw L, Timmermans JP, Kroese AB (2011) Chronic alcohol consumption induces an overproduction of NO by nNOS- and iNOS-expressing myenteric neurons in the murine small intestine. Neurogastroenterol Motil 23:e237–e248

    Article  PubMed  Google Scholar 

  • Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87

    Article  PubMed  CAS  Google Scholar 

  • Chandra R, Samsa LA, Vigna SR, Liddle RA (2010) Pseudopod-like basal cell processes in intestinal cholecystokinin cells. Cell Tissue Res 341:289–297

    Article  PubMed  Google Scholar 

  • Crawley JN, Corwin RL (1994) Biological actions of cholecystokinin. Peptides 15:731–755

    Article  PubMed  CAS  Google Scholar 

  • Curley JP, Jordan ER, Swaney WT, Izraelit A, Kammel S, Champagne FA (2009) The meaning of weaning: influence of the weaning period on behavioral development in mice. Dev Neurosci 31:318–331

    Article  PubMed  CAS  Google Scholar 

  • Dockray GJ (1976) Immunochemical evidence of cholecystokinin-like peptides in brain. Nature 264:568–570

    Article  PubMed  CAS  Google Scholar 

  • Emery DW (2011) The use of chromatin insulators to improve the expression and safety of integrating gene transfer vectors. Hum Gene Ther 22:761–774

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Keast JR (1984) Choline acetyltransferase- and peptide immunoreactivity of submucous neurons in the small intestine of the guinea-pig. Cell Tissue Res 237:329–336

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Young HM, Pompolo S, Bornstein JC, Kunze WA, McConalogue K (1995) Plurichemical transmission and chemical coding of neurons in the digestive tract. Gastroenterology 108:554–563

    Article  PubMed  CAS  Google Scholar 

  • Gabella G (1989) Fall in the number of myenteric neurons in aging guinea pigs. Gastroenterology 96:1487–1493

    PubMed  CAS  Google Scholar 

  • Giralt M, Vergara P (2000) Inhibition by CCK of ascending contraction elicited by mucosal stimulation in the duodenum of the rat. Neurogastroenterol Motil 12:173–180

    Article  PubMed  CAS  Google Scholar 

  • Gulley S, Covasa M, Ritter RC, Sayegh AI (2005) Cholecystokinin1 receptors mediate the increase in Fos-like immunoreactivity in the rat myenteric plexus following intestinal oleate infusion. Physiol Behav 86:128–135

    Article  PubMed  CAS  Google Scholar 

  • Hayes MR, Covasa M (2006) Dorsal hindbrain 5-HT3 receptors participate in control of meal size and mediate CCK-induced satiation. Brain Res 1103:99–107

    Article  PubMed  CAS  Google Scholar 

  • Hayes MR, Chory FM, Gallagher CA, Covasa M (2006) Serotonin type-3 receptors mediate cholecystokinin-induced satiation through gastric distension. Am J Physiol Regul Integr Comp Physiol 291:R115–R123

    Article  PubMed  CAS  Google Scholar 

  • Hökfelt T, Lundberg JM, Schultzberg M, Johansson O, Skirboll L, Anggård A, Fredholm B, Hamberger B, Pernow B, Rehfeld J, Goldstein M (1980) Cellular localization of peptides in neural structures. Proc R Soc Lond B Biol Sci 210:63–77

    Article  PubMed  Google Scholar 

  • Izbéki F, Wittman T, Rosztóczy A, Linke N, Bódi N, Fekete E, Bagyánszki M (2008) Immediate insulin treatment prevents gut motility alterations and loss of nitrergic neurons in the ileum and colon of rats with streptozotocin-induced diabetes. Diabetes Res Clin Pract 80:192–198

    Article  PubMed  Google Scholar 

  • Larsson LI, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165:201–218

    Article  PubMed  CAS  Google Scholar 

  • Lay JM, Gillespie PJ, Samuelson LC (1999) Murine prenatal expression of cholecystokinin in neural crest, enteric neurons, and enteroendocrine cells. Dev Dyn 216:190–200

    Article  PubMed  CAS  Google Scholar 

  • Lay JM, Bane G, Brunkan CS, Davis J, Lopez-Diaz L, Samuelson LC (2004) Enteroendocrine cell expression of a cholecystokinin gene construct in transgenic mice and cultured cells. Am J Physiol Gastrointest Liver Physiol 288:G354–G361

    Article  PubMed  Google Scholar 

  • Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65

    Article  PubMed  CAS  Google Scholar 

  • Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495

    Article  PubMed  CAS  Google Scholar 

  • Muller JE, Straus E, Yalow RS (1977) Cholecystokinin and its COOH-terminal octapeptide in the pig brain. Proc Natl Acad Sci USA 74:3035–3037

    Article  PubMed  CAS  Google Scholar 

  • Powley TL, Phillips RJ (2004) Gastric satiation is volumetric, intestinal satiation is nutritive. Physiol Behav 82:69–74

    Article  PubMed  CAS  Google Scholar 

  • Raybould HE, Glatzle J, Robin C, Meyer JH, Phan T, Wong H, Sternini C (2003) Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol 284:G367–G372

    PubMed  CAS  Google Scholar 

  • Recillas-Targa F, Valadez-Graham V, Farrell CM (2004) Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays 26:796–807

    Article  PubMed  CAS  Google Scholar 

  • Román V, Bagyánszki M, Krecsmarik M, Horváth A, Resch BA, Fekete E (2004) Spatial pattern analysis of nitrergic neurons in the developing myenteric plexus of the human fetal intestine. Cytometry A 57:108–112

    Article  PubMed  Google Scholar 

  • Santer RM (1994) Survival of the population of NADPH-diaphorase stained myenteric neurons in the small intestine of aged rats. J Auton Nerv Syst 49:115–121

    Article  PubMed  CAS  Google Scholar 

  • Scarpignato C, Varga G, Corradi C (1993) Effect of CCK and its antagonists on gastric emptying. J Physiol (Paris) 87:291–300

    Article  CAS  Google Scholar 

  • Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S (1980) Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase. Neuroscience 5:689–744

    Article  PubMed  CAS  Google Scholar 

  • Schutte IW, Hollestein KB, Akkermans LM, Kroese AB (1997) Evidence for a role of cholecystokinin as neurotransmitter in the guinea-pig enteric nervous system. Neurosci Lett 236:155–158

    Article  PubMed  CAS  Google Scholar 

  • Storr M, Sattler D, Hahn A, Schusdziarra V, Allescher HD (2003) Endogenous CCK depresses contractile activity within the ascending myenteric reflex pathway of rat ileum. Neuropharmacology 44:524–532

    Article  PubMed  CAS  Google Scholar 

  • Vintersten K, Monetti C, Gertsenstein M, Zhang P, Laszlo L, Biechele S, Nagy A (2004) Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis 40:241–246

    Article  PubMed  CAS  Google Scholar 

  • Washington MC, Coggeshall J, Sayegh AI (2011) Cholecystokinin-33 inhibits meal size and prolongs the subsequent intermeal interval. Peptides 32:971–797

    Article  PubMed  CAS  Google Scholar 

  • Weller A (2006) The ontogeny of postingestive inhibitory stimuli: examining the role of CCK. Dev Psychobiol 48:368–379

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Burnstock G (2004) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolett Bódi.

Additional information

Zoltán Máté and Marietta Zita Poles equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Máté, Z., Poles, M.Z., Szabó, G. et al. Spatiotemporal expression pattern of DsRedT3/CCK gene construct during postnatal development of myenteric plexus in transgenic mice. Cell Tissue Res 352, 199–206 (2013). https://doi.org/10.1007/s00441-013-1552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1552-7

Keywords

Navigation