Skip to main content

Advertisement

Log in

Calcium signaling in Parkinson’s disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is an almost universal second messenger that regulates important activities of all eukaryotic cells. It is of critical importance to neurons, which have developed extensive and intricate pathways to couple the Ca2+ signal to their biochemical machinery. In particular, Ca2+ participates in the transmission of the depolarizing signal and contributes to synaptic activity. During aging and in neurodegenerative disease processes, the ability of neurons to maintain an adequate energy level can be compromised, thus impacting on Ca2+ homeostasis. In Parkinson’s disease (PD), many signs of neurodegeneration result from compromised mitochondrial function attributable to specific effects of toxins on the mitochondrial respiratory chain and/or to genetic mutations. Despite these effects being present in almost all cell types, a distinguishing feature of PD is the extreme selectivity of cell loss, which is restricted to the dopaminergic neurons in the ventral portion of the substantia nigra pars compacta. Many hypotheses have been proposed to explain such selectivity, but only recently it has been convincingly shown that the innate autonomous activity of these neurons, which is sustained by their specific Cav1.3 L-type channel pore-forming subunit, is responsible for the generation of basal metabolic stress that, under physiological conditions, is compensated by mitochondrial buffering. However, when mitochondria function becomes even partially compromised (because of aging, exposure to environmental factors or genetic mutations), the metabolic stress overwhelms the protective mechanisms, and the process of neurodegeneration is engaged. The characteristics of Ca2+ handling in neurons of the substantia nigra pars compacta and the possible involvement of PD-related proteins in the control of Ca2+ homeostasis will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramov AY, Gegg M, Grunewald A, Wood NW, Klein C, Schapira AH (2011) Bioenergetic consequences of PINK1 mutations in Parkinson disease. PLoS One 6:e25622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adamczyk A, Strosznajder JB (2006) Alpha-synuclein potentiates Ca2+ influx through voltage-dependent Ca2+ channels. Neuroreport 17:1883–1886

    CAS  PubMed  Google Scholar 

  • Akundi RS, Huang Z, Eason J, Pandya JD, Zhi L, Cass WA, Sullivan PG, Bueler H (2011) Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in pink1-deficient mice. PLoS One 6:e16038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco TM, Thomas B, Ko HS, Sasaki M, Ischiropoulos H, Przedborski S, Dawson TM, Dawson VL (2007) DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A 104:14807–14812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ashrafi G, Schwarz TL (2013) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20:31–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auluck PK, Caraveo G, Lindquist S (2010) Alpha-synuclein: membrane interactions and toxicity in Parkinson's disease. Annu Rev Cell Dev Biol 26:211–233

    CAS  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    PubMed  Google Scholar 

  • Baldi I, Cantagrel A, Lebailly P, Tison F, Dubroca B, Chrysostome V, Dartigues JF, Brochard P (2003) Association between Parkinson's disease and exposure to pesticides in southwestern France. Neuroepidemiology 22:305–310

    PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzazi H, Ben Johny M, Adams PJ, Soong TW, Yue DT (2013) Continuously tunable Ca(2+) regulation of RNA-edited CaV1.3 channels. Cell Rep 5:367–377

    CAS  PubMed  Google Scholar 

  • Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    CAS  PubMed  Google Scholar 

  • Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70:1438–1444

    CAS  PubMed  Google Scholar 

  • Bendor JT, Logan TP, Edwards RH (2013) The function of alpha-synuclein. Neuron 79:1044–1066

    CAS  PubMed  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301–1306

    CAS  PubMed  Google Scholar 

  • Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of aging and cognitive decline. Nature 464:529–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolam JP, Hanley JJ, Booth PA, Bevan MD (2000) Synaptic organisation of the basal ganglia. J Anat 196:527–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonifati V, Rizzu P, Baren MJ van, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, Dongen JW van, Vanacore N, Swieten JC van, Brice A, Meco G, Duijn CM van, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299:256–259

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci. doi. doi:10.1007/s00018-013-1550-7

  • Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buttner S, Faes L, Reichelt WN, Broeskamp F, Habernig L, Benke S, Kourtis N, Ruli D, Carmona-Gutierrez D, Eisenberg T, D'Hooge P, Ghillebert R, Franssens V, Harger A, Pieber TR, Freudenberger P, Kroemer G, Sigrist SJ, Winderickx J, Callewaert G, Tavernarakis N, Madeo F (2013) The Ca2+/Mn2+ ion-pump PMR1 links elevation of cytosolic Ca(2+) levels to alpha-synuclein toxicity in Parkinson's disease models. Cell Death Differ 20:465–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson's disease. Biofactors 37:228–240

    PubMed  Google Scholar 

  • Calì T, Ottolini D, Brini M (2012a) Mitochondrial Ca2+ and neurodegeneration. Cell Calcium 52:73–85

    PubMed Central  PubMed  Google Scholar 

  • Calì T, Ottolini D, Negro A, Brini M (2012b) Alpha-synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287:17914–17929

    PubMed Central  PubMed  Google Scholar 

  • Calì T, Ottolini D, Brini M (2013a) Calcium and endoplasmic reticulum-mitochondria tethering in neurodegeneration. DNA Cell Biol 32:140–146

    PubMed  Google Scholar 

  • Calì T, Ottolini D, Negro A, Brini M (2013b) Enhanced parkin levels favour ER-mitochondria crosstalk and guarantee Ca2+ transfer to sustain cell bioenergetics. BBA - Mol Basis Dis 495–508

  • Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) “Rejuvenation” protects neurons in mouse models of Parkinson's disease. Nature 447:1081–1086

    CAS  PubMed  Google Scholar 

  • Cherra SJ 3rd, Steer E, Gusdon AM, Kiselyov K, Chu CT (2013) Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol 182:474–484

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298

    CAS  PubMed  Google Scholar 

  • Cohen G (1984) Oxy-radical toxicity in catecholamine neurons. Neurotoxicology 5:77–82

    CAS  PubMed  Google Scholar 

  • Collier TJ, Lipton J, Daley BF, Palfi S, Chu Y, Sortwell C, Bakay RA, Sladek JR Jr, Kordower JH (2007) Aging-related changes in the nigrostriatal dopamine system and the response to MPTP in nonhuman primates: diminished compensatory mechanisms as a prelude to Parkinsonism. Neurobiol Dis 26:56–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Collier TJ, Kanaan NM, Kordower JH (2011) Aging as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nat Rev Neurosci 12:359–366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    CAS  PubMed  Google Scholar 

  • Cookson MR (2012) Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2:a009415

    PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28 K) immunohistochemistry. Brain 122:1421–1436

    PubMed  Google Scholar 

  • Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259

    CAS  PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    PubMed  Google Scholar 

  • de Vries RL, Przedborski S (2013) Mitophagy and Parkinson's disease: be eaten to stay healthy. Mol Cell Neurosci 55:37–43

    PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Soderkvist P, Felice A (2007) Environmental risk factors for Parkinson's disease and Parkinsonism: the Geoparkinson study. Occup Environ Med 64:666–672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Nasstrom T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergstrom J, Ingelsson M, Quintas A, Sebastiao AM, Lopes LV, Outeiro TF (2012) Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 32:11750–11762

    CAS  PubMed  Google Scholar 

  • Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci 30:14610–14618

    CAS  PubMed  Google Scholar 

  • Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68:384–386

    CAS  PubMed  Google Scholar 

  • Dryanovski DI, Guzman JN, Xie Z, Galteri DJ, Volpicelli-Daley LA, Lee VM, Miller RJ, Schumacker PT, Surmeier DJ (2013) Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33:10154–10164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival.J Neurosci 30:6838-6851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erisir A, Lau D, Rudy B, Leonard CS (1999) Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J Neurophysiol 82:2476–2489

    CAS  PubMed  Google Scholar 

  • Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J 31:3038–3062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahn S (2008) The history of dopamine and levodopa in the treatment of Parkinson's disease. Mov Disord 23(Suppl 3):S497–508

    PubMed  Google Scholar 

  • Firestone JA, Smith-Weller T, Franklin G, Swanson P, Longstreth WT Jr, Checkoway H (2005) Pesticides and risk of Parkinson disease: a population-based case-control study. Arch Neurol 62:91–95

    PubMed  Google Scholar 

  • Follett J, Darlow B, Wong MB, Goodwin J, Pountney DL (2013) Potassium depolarization and raised calcium induces alpha-synuclein aggregates. Neurotox Res 23:378–392

    CAS  PubMed  Google Scholar 

  • Forti L, Cesana E, Mapelli J, D'Angelo E (2006) Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol (Lond) 574:711–729

    CAS  Google Scholar 

  • Fujimura K, Matsuda Y (1989) Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104:53–57

    CAS  PubMed  Google Scholar 

  • Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N, Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A (2006) Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97:1071–1077

    CAS  PubMed  Google Scholar 

  • Galione A (2011) NAADP receptors. Cold Spring Harb Perspect Biol 3:a004036

    PubMed Central  PubMed  Google Scholar 

  • Gandhi S, Muqit MM, Stanyer L, Healy DG, Abou-Sleiman PM, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees AJ, Latchman DS, Holton JL, Wood NW, Revesz T (2006) PINK1 protein in normal human brain and Parkinson's disease. Brain 129:1720–1731

    CAS  PubMed  Google Scholar 

  • Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33:627–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gandhi S, Vaarmann A, Yao Z, Duchen MR, Wood NW, Abramov AY (2012) Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease. PLoS One 7:e37564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia Ruiz PJ, Catalan MJ, Fernandez Carril JM (2011) Initial motor symptoms of Parkinson disease. Neurologist 17:S18–S20

    PubMed  Google Scholar 

  • Gautier CA, Giaime E, Caballero E, Nunez L, Song Z, Chan D, Villalobos C, Shen J (2012) Regulation of mitochondrial permeability transition pore by PINK1. Mol Neurodegener 7:22

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Bjorklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 12. Elsevier, Amsterdam, pp 371-468

    Google Scholar 

  • Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    CAS  PubMed  Google Scholar 

  • German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced Parkinsonism: sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci 648:42–62

    CAS  PubMed  Google Scholar 

  • Giaime E, Yamaguchi H, Gautier CA, Kitada T, Shen J (2012) Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening. PLoS One 7:e40501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibb WR1, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 51:745–752

  • Gibb WR, Lees AJ (1991) Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J Neurol Neurosurg Psychiatry 54:388–396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgio V, Stockum S von, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

  • Goldberg JA, Guzman JN, Estep CM, Ilijic E, Kondapalli J, Sanchez-Padilla J, Surmeier DJ (2012) Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson's disease. Nat Neurosci 15:1414–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg JH, Fee MS (2012) A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds. Nat Neurosci 15:620–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Suaga P, Luzon-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, Woodman PG, Churchill GC, Hilfiker S (2012) Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet 21:511–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grace AA, Bunney BS (1983) Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—1. Identification and characterization. Neuroscience 10:301–315

    CAS  PubMed  Google Scholar 

  • Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–700

    CAS  PubMed  Google Scholar 

  • Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700

    CAS  PubMed  Google Scholar 

  • Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction? Ann Neurol 32(Suppl):S10–S15

    CAS  PubMed  Google Scholar 

  • Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK (2008) Pesticide exposure and risk of Parkinson's disease: a family-based case-control study. BMC Neurol 8:6

    PubMed Central  PubMed  Google Scholar 

  • Hassler R (1938) Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 48:387–476

    Google Scholar 

  • Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJ, Willems PH, Baekelandt V (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124:1115–1125

    CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

    PubMed Central  PubMed  Google Scholar 

  • Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    CAS  PubMed  Google Scholar 

  • Hettiarachchi NT, Parker A, Dallas ML, Pennington K, Hung CC, Pearson HA, Boyle JP, Robinson P, Peers C (2009) Alpha-synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. J Neurochem 111:1192–1201

    CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1989) Aging and neurotoxins as causative factors in idiopathic Parkinson's disease—a critical analysis of the neurochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 13:319–328

    CAS  PubMed  Google Scholar 

  • Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Kohr G, Higuchi M, Fatemi-Shariatpanahi H, Harden B, Yue DT, Soong TW (2012) RNA editing of the IQ domain in Ca(v)1.3 channels modulates their Ca(2)(+)-dependent inactivation. Neuron 73:304–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC (1993) Risk factors for Parkinson's disease. Neurology 43:1693–1697

    CAS  PubMed  Google Scholar 

  • Hurley MJ, Brandon B, Gentleman SM, Dexter DT (2013) Parkinson's disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain 136:2077–2097

    PubMed  Google Scholar 

  • Kanaan NM, Manfredsson FP (2012) Loss of functional alpha-synuclein: a toxic event in Parkinson's disease? J Parkinsons Dis 2:249–267

    CAS  PubMed  Google Scholar 

  • Kanaan NM, Kordower JH, Collier TJ (2007) Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. J Comp Neurol 502:683–700

    PubMed  Google Scholar 

  • Kasten M, Klein C (2013) The many faces of alpha-synuclein mutations. Mov Disord 28:697–701

    PubMed  Google Scholar 

  • Khaliq ZM, Bean BP (2010) Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J Neurosci 30:7401–7413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    CAS  PubMed  Google Scholar 

  • Koyano F, Okatsu K, Ishigaki S, Fujioka Y, Kimura M, Sobue G, Tanaka K, Matsuda N (2013) The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons. Genes Cells 18:672–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 18:106–108

    CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr (2002) Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322:1089–1102

    CAS  PubMed  Google Scholar 

  • Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14:38–48

    CAS  PubMed  Google Scholar 

  • Lau LM de, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525–535

  • Lesage S, Brice A (2009) Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59

    CAS  PubMed  Google Scholar 

  • Lowe R, Pountney DL, Jensen PH, Gai WP, Voelcker NH (2004) Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Sci 13:3245–3252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K (2003) The role of alpha-synuclein in Parkinson's disease: insights from animal models. Nat Rev Neurosci 4:727–738

    CAS  PubMed  Google Scholar 

  • Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, Masliah E (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson's disease by disturbing calcium flux. J Neurochem 108:1561–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  • McDonnell L, McDonnell L, Maginnis C, Lewis S, Pickering N, Antoniak M, Hubbard R, Lawson I, Britton J (2003) Neurology 61:716–717

    CAS  PubMed  Google Scholar 

  • Melachroinou K, Xilouri M, Emmanouilidou E, Masgrau R, Papazafiri P, Stefanis L, Vekrellis K (2013) Deregulation of calcium homeostasis mediates secreted alpha-synuclein-induced neurotoxicity. Neurobiol Aging 34:2853–2865

    CAS  PubMed  Google Scholar 

  • Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G (1994) Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharmacol 113:831–838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mortiboys H, Johansen KK, Aasly JO, Bandmann O (2010) Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 75:2017–2020

    CAS  PubMed  Google Scholar 

  • Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62:218–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease? Brain Res 668:62–70

    CAS  PubMed  Google Scholar 

  • Mutch WJ, Dingwall-Fordyce I, Downie AW, Paterson JG, Roy SK (1986) Parkinson's disease in a Scottish city. Br Med J (Clin Res Ed) 292:534–536

    CAS  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8:e1000298

    PubMed Central  PubMed  Google Scholar 

  • Nath S, Goodwin J, Engelborghs Y, Pountney DL (2011) Raised calcium promotes alpha-synuclein aggregate formation. Mol Cell Neurosci 46:516–526

    CAS  PubMed  Google Scholar 

  • Neafsey EJ, Drucker G, Raikoff K, Collins MA (1989) Striatal dopaminergic toxicity following intranigral injection in rats of 2-methyl-norharman, a beta-carbolinium analog of N-methyl-4-phenylpyridinium ion (MPP+). Neurosci Lett 105:344–349

    CAS  PubMed  Google Scholar 

  • Neafsey EJ, Albores R, Gearhart D, Kindel G, Raikoff K, Tamayo F, Collins MA (1995) Methyl-beta-carbolinium analogs of MPP + cause nigrostriatal toxicity after substantia nigra injections in rats. Brain Res 675:279–288

    CAS  PubMed  Google Scholar 

  • Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol (Lond) 466:727–747

    CAS  Google Scholar 

  • Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ottolini D, Calì T, Brini M (2013a) Etiology and pathogenesis of Parkinson's disease: role of mitochondrial pathology. Res Rep Biochem 2013:55–70

    Google Scholar 

  • Ottolini D, Calì T, Negro A, Brini M (2013b) The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum-mitochondria tethering. Hum Mol Genet 22:2152–2168

    CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    CAS  PubMed  Google Scholar 

  • Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    PubMed  Google Scholar 

  • Pakkenberg H, Andersen BB, Burns RS, Pakkenberg B (1995) A stereological study of substantia nigra in young and old rhesus monkeys. Brain Res 693:201–206

    CAS  PubMed  Google Scholar 

  • Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008) Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 65:1272–1284

    CAS  PubMed  Google Scholar 

  • Parsell M (2009) Steven M. Platek, Julian Paul Keenan and Todd K. Shackelford (eds) Evolutionary cognitive neuroscience (book review). Mind Mach 19:275–278

    Google Scholar 

  • Pasternak B, Svanstrom H, Nielsen NM, Fugger L, Melbye M, Hviid A (2012) Use of calcium channel blockers and Parkinson's disease. Am J Epidemiol 175:627–635

    PubMed  Google Scholar 

  • Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R (2013) The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 288:10750–10758

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29:1754–1762

    CAS  PubMed  Google Scholar 

  • Petrovitch H, Ross GW, Abbott RD, Sanderson WT, Sharp DS, Tanner CM, Masaki KH, Blanchette PL, Popper JS, Foley D, Launer L, White LR (2002) Plantation work and risk of Parkinson disease in a population-based longitudinal study. Arch Neurol 59:1787–1792

    PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047

    CAS  PubMed  Google Scholar 

  • Puopolo M, Raviola E, Bean BP (2007) Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 27:645–656

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89:1009–1023

    CAS  PubMed  Google Scholar 

  • Ren H, Fu K, Wang D, Mu C, Wang G (2011) Oxidized DJ-1 interacts with the mitochondrial protein BCL-XL. J Biol Chem 286:35308–35317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren H, Fu K, Mu C, Zhen X, Wang G (2012) L166P mutant DJ-1 promotes cell death by dissociating Bax from mitochondrial Bcl-XL. Mol Neurodegener 7:40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reznichenko L, Cheng Q, Nizar K, Gratiy SL, Saisan PA, Rockenstein EM, Gonzalez T, Patrick C, Spencer B, Desplats P, Dale AM, Devor A, Masliah E (2012) In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy. J Neurosci 32:9992–9998

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritz B, Rhodes SL, Qian L, Schernhammer E, Olsen JH, Friis S (2010) L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 67:600–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898

    CAS  PubMed  Google Scholar 

  • Schapira AH (2011) Mitochondrial pathology in Parkinson's disease. Mt Sinai J Med 78:872–881

    PubMed  Google Scholar 

  • Schmidt F, Levin J, Kamp F, Kretzschmar H, Giese A, Botzel K (2012) Single-channel electrophysiology reveals a distinct and uniform pore complex formed by alpha-synuclein oligomers in lipid membranes. PLoS One 7:e42545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwaller B (2012) The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim Biophys Acta 1820:1294–1303

    CAS  PubMed  Google Scholar 

  • Seidler A, Hellenbrand W, Robra BP, Vieregge P, Nischan P, Joerg J, Oertel WH, Ulm G, Schneider E (1996) Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany. Neurology 46:1275–1284

    CAS  PubMed  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    CAS  PubMed  Google Scholar 

  • Shtifman A, Zhong N, Lopez JR, Shen J, Xu J (2011) Altered Ca2+ homeostasis in the skeletal muscle of DJ-1 null mice. Neurobiol Aging 32:125–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sibley DR (1995) Molecular biology of dopamine receptors. In: Surmeier DJ, Ariano MA (eds) Molecular and cellular mechanisms of the neostriatal function. Landes, Austin, pp 255-272

    Google Scholar 

  • Smith Y, Raju DV, Pare JF, Sidibe M (2004) The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 27:520–527

    CAS  PubMed  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, Nairn AC, Greengard P (2000) Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:4480–4488

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    CAS  PubMed  Google Scholar 

  • Steiner H, Tseng KY (2010) Handbook of basal ganglia structure and function: a decade of progress. Elsevier Science, Amsterdam

    Google Scholar 

  • Sterky FH, Lee S, Wibom R, Olson L, Larsson NG (2011) Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo. Proc Natl Acad Sci U S A 108:12937–12942

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surmeier DJ (2007) Calcium, aging, and neuronal vulnerability in Parkinson's disease. Lancet Neurol 6:933–938

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Schumacker PT (2013) Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. J Biol Chem 288:10736–10741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385–397

    CAS  PubMed  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson's disease. Cold Spring Harb Perspect Med 2:a009290

    PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Ohama E, Suzuki S, Horikawa Y, Ishikawa A, Morita T, Tsuji S, Ikuta F (1994) Familial juvenile Parkinsonism: clinical and pathologic study in a family. Neurology 44:437–441

    CAS  PubMed  Google Scholar 

  • Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, Bressman S, Deligtisch A, Marras C, Lyons KE, Bhudhikanok GS, Roucoux DF, Meng C, Abbott RD, Langston JW (2009) Occupation and risk of Parkinsonism: a multicenter case-control study. Arch Neurol 66:1106–1113

    PubMed  Google Scholar 

  • Tateno T, Harsch A, Robinson HP (2004) Threshold firing frequency-current relationships of neurons in rat somatosensory cortex: type 1 and type 2 dynamics. J Neurophysiol 92:2283–2294

    CAS  PubMed  Google Scholar 

  • Tolleson CM, Fang JY (2013) Advances in the mechanisms of Parkinson's disease. Discov Med 15:61–66

    PubMed  Google Scholar 

  • Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9:445–454

    CAS  PubMed  Google Scholar 

  • Tsigelny IF, Sharikov Y, Wrasidlo W, Gonzalez T, Desplats PA, Crews L, Spencer B, Masliah E (2012) Role of alpha-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J 279:1000–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uhl GR, Hedreen JC, Price DL (1985) Parkinson's disease: loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology 35:1215–1218

    CAS  PubMed  Google Scholar 

  • Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–1160

    CAS  PubMed  Google Scholar 

  • Van Laar VS, Arnold B, Cassady SJ, Chu CT, Burton EA, Berman SB (2011) Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization. Hum Mol Genet 20:927–940

    PubMed Central  PubMed  Google Scholar 

  • Vilchis C, Bargas J, Ayala GX, Galvan E, Galarraga E (2000) Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience 95:745–752

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2003) Functional neuroanatomy of the basal ganglia in Parkinson's disease. Adv Neurol 91:9–18

    PubMed  Google Scholar 

  • Wilson MA (2011) The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 15:111–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Lipscombe D (2001) Neuronal Ca(V)1.3alpha(1) L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951

    CAS  PubMed  Google Scholar 

  • Yamada T, McGeer PL, Baimbridge KG, McGeer EG (1990) Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307

    CAS  PubMed  Google Scholar 

  • Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol 3:41–66

    CAS  PubMed  Google Scholar 

  • Yao Z, Gandhi S, Burchell VS, Plun-Favreau H, Wood NW, Abramov AY (2011) Cell metabolism affects selective vulnerability in PINK1-associated Parkinson's disease. J Cell Sci 124:4194–4202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ying Z, Lin F, Gu W, Su Y, Arshad A, Qing H, Deng Y (2011) Alpha-synuclein increases U251 cells vulnerability to hydrogen peroxide by disrupting calcium homeostasis. J Neural Transm 118:1165–1172

    CAS  PubMed  Google Scholar 

  • Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Brini.

Additional information

The original work by the authors has been supported over the years by grants from the Italian Ministry of University and Research (PRIN 2003, 2005, and 2008), the Telethon Foundation (Project GGP04169), the Italian National Research Council (Agenzia 2000, CNR), and the University of Padova (Progetto di Ateneo 2008 CPDA082825) to M.B. Tito Calì is supported by the University of Padova (Progetto Giovani GRIC128SP0, Bando 2012).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calì, T., Ottolini, D. & Brini, M. Calcium signaling in Parkinson’s disease. Cell Tissue Res 357, 439–454 (2014). https://doi.org/10.1007/s00441-014-1866-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1866-0

Keywords

Navigation