Skip to main content

Advertisement

Log in

Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Globally 360 million people have disabling hearing loss and, of these, 32 million are children. Human hearing relies on 15,000 hair cells that transduce mechanical vibrations to electrical signals in the auditory nerve. The process is powered by the endo-cochlear potential, which is produced by a vascularized epithelium that actively transports ions in conjunction with a gap junction (GJ) system. This “battery” is located “off-site” in the lateral wall of the cochlea. The GJ syncytium contains the GJ protein genes beta 2 (GJB2/connexin26 (Cx26)) and 6 (GJB6/connexin30 (Cx30)), which are commonly involved in hereditary deafness. Because the molecular arrangement of these proteins is obscure, we analyze GJ protein expression (Cx26/30) in human cochleae by using super-resolution structured illumination microscopy. At this resolution, the Cx26 and Cx30 proteins were visible as separate plaques, rather than being co-localized in heterotypic channels, as previously suggested. The Cx26 and Cx30 proteins thus seem not to be co-expressed but to form closely associated assemblies of GJ plaques. These results could assist in the development of strategies to treat genetic hearing loss in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Cx30:

Connexin30

Cx26:

Connexin26

GJ:

Gap junction

TJ:

Tight junction

TEM:

Transmission electron microscopy

EP:

Endocochlear potential

MIP:

Maximal intensity projection

SR-SIM:

Super-resolution structured illumination microscopy

IHC:

Immunohistochemistry

GJB2:

GJ protein gene beta 2

GJB6:

GJ protein gene beta 6

SV:

Stria vascularis

KCNJ10:

Gene encoding a member of the inward rectifier-type K+ channel family Kir4.1

NKCC1:

Gene encoding the furosemide-sensitive Na+/K+/2Cl- membrane co-transporter

KCNQ1/KCNE1:

Gene encoding the voltage-gated potassium channel Kv7.1 (KvLQT1)

3-D:

Three-dimensional

References

  • Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368

    Article  CAS  PubMed  Google Scholar 

  • Bekesy GVDC (1952) Resting potentials inside the cochlear partition. J Acoust Soc Am 24:72–76

    Article  Google Scholar 

  • Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F (2005) Impaired permeability to Ins (1,4,5) P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7:63–69

    Article  CAS  PubMed  Google Scholar 

  • Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314

    Article  CAS  PubMed  Google Scholar 

  • Boulay AC, Castillo FJ del, Giraudet F, Hamard G, Giaume C, Petit C, Avan P, Cohen-Salmon M (2013) Hearing is normal without Connexin30. J Neurosci 33:430–434

  • Castillo FJ del, Castillo I del (2012) Genetics of isolated auditory neuropathies. Front Biosci (Landmark Ed) 17:1251–1265

  • Castillo del I, Villamar M, Moreno-Pelayo MA, Castillo FJ del, Alvarez A, Telleria D, Menendez I, Moreno F (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249

  • Castillo FJ del, Rodriguez-Ballesteros M, Alvarez A, Hutchin T, Leonardi E, Oliveira CA de, Azaiez H, Brownstein Z, Avenarius MR, Marlin S, Pandya A, Shahin H, Siemering KR, Weil D, Wuyts W, Aguirre LA, Martin Y, Moreno Pelayo MA, Villamar M, Avraham KB, Dahl HH, Kanaan M, Nance WE, Petit C, Smith RJ, Van Camp G, Sartorato EL, Murgia A, Moreno F, Castillo I del (2005) A novel deletion involving the connexin-30 gene, del(GJB6-d13s1854), found in trans with mutations in the GJB2 gene (connexin-26) in subjects with DFNB1 non-syndromic hearing impairment. J Med Genet 42:588–594

  • Chen J, Zhao H (2014) The role of an inwardly rectifying K+ channel (Kir4.1) in the inner ear and hearing loss. Neuroscience 265:137–146

  • Choung YH, Moon SK, Park HJ (2002) Functional study of GJB2 in hereditary hearing loss. Laryngoscope 112:1667–1671

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A 104:6229–6234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn ES, Kelley PM (1999) Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am J Med Genet 89:130–136

    Article  CAS  PubMed  Google Scholar 

  • Delpire E, Lu J, England R, Dull C, Thorne T (1999) Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22:192–195

    Article  CAS  PubMed  Google Scholar 

  • Dinh EH, Ahmad S, Chang Q, Tang W, Stong B, Lin X (2009) Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Res 1277:52–69

    Article  PubMed Central  Google Scholar 

  • Estevez R, Boettger T, Stein V, Birkenhager R, Otto E, Hildebrandt F, Jentsch TJ (2001) Barttin is a Cl- channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature 414:558–561

    Article  CAS  PubMed  Google Scholar 

  • Falk MM, Lauf U (2001) High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP and YFP to study the structural composition of gap junctions in living cells. Microsc Res Tech 52:251–262

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Marziano NK, Casalotti SO, Becker DL, Jagger D (2003) The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell Commun Adhes 10:341–346

    Article  CAS  PubMed  Google Scholar 

  • Goodenough DA, Revel JP (1970) A fine structural analysis of intercellular gap junctions in the mouse liver. J Cell Biol 45:272–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, Yamauchi D, Marcus DC, Kachar B (2004) Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24:7051–7062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grifa A, Wagner CAD, Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18

    CAS  PubMed  Google Scholar 

  • Gustafsson MG, Shao L, Carlton PM, Wang CJR, Golobovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iizuka T, Kamiya K, Gotoh S, Sugitani Y, Suzuki M, Noda T, Minowa O, Ikeda K (2015) Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Genet 24:3651–3661

    CAS  PubMed  Google Scholar 

  • Jian XJ, Goodenough DA (1996) Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A 93:1287–1291

    Article  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83

    Article  CAS  PubMed  Google Scholar 

  • Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394:527–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lautermann J, Frank HG, Jahnke K, Traub O, Winterhager E (1999) Developmental expression patterns of connexin26 and −30 in the rat cochlea. Dev Genet 25:306–311

    Article  CAS  PubMed  Google Scholar 

  • Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D (2001) A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: a novel founder mutation in Ashkenazi Jews. Hum Mutat 18:460

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Boström M, Kinnefors A, Rask-Andersen H (2009) Unique expression of connexins in the human cochlea. Hear Res 250:55–62

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Kinnefors A, Boström M, Rask-Andersen H (2010) Expression of peripherin in human cochlea. Cell Tissue Res 342:345–351

    Article  PubMed  Google Scholar 

  • Locke D, Stein T, Davies C, Morris J, Harris AL, Evans WH, Monaghan P, Gusterson B (2004) Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res 298:643–660

    Article  CAS  PubMed  Google Scholar 

  • Lynn BD, Tress O, May D, Willecke K, Nagy JI (2011) Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. Eur J Neurosci 34:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407

    Article  CAS  PubMed  Google Scholar 

  • Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A (2003) Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12:805–812

    Article  CAS  PubMed  Google Scholar 

  • Miwa T, Minoda R, Ise M, Yamada T, Yumoto E (2013) Mouse otocyst transuterine gene transfer restores hearing in mice with connexin 30 deletion-associated hearing loss. Mol Ther 21:1142–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y (2008) The endocochlear potential depends on two K diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105:1751–1756

  • Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA (2008) Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci U S A 105:18776–18781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallares-Ruiz N, Blanchet P, Mondain M, Claustres M, Roux AF (2002) A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect? Eur J Hum Genet 10:72–76

    Article  CAS  PubMed  Google Scholar 

  • Petit C, Levilliers J, Hardelin JP (2001) Molecular genetics of hearing loss. Annu Rev Genet 35:589–645

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Tang W, Zhou B, Ahmad S, Chang Q, Li X, Lin X (2012) Early developmental expression of connexin26 in the cochlea contributes to its dominate functional role in the cochlear gap junctions. Biochem Biophys Res Commun 417:245–50

    Article  CAS  PubMed  Google Scholar 

  • Rackauskas M, Kreuzberg MM, Pranevicius M, Willecke K, Verselis VK, Bukauskas FF (2007) Gating properties of heterotypic gap junction channels formed of connexins 40, 43, and 45. Biophys J 92:1952–1965

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Tylstedt S, Kinnefors A, Illing R (2000) Synapses on human spiral ganglion cells: a transmission electron microscopy and immunohistochemical study. Hear Res 141:1–11

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991

    Article  CAS  PubMed  Google Scholar 

  • Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hördt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations causes Jervell and Lange-Nielsen syndrome. Nat Genet 17:267–268

    Article  CAS  PubMed  Google Scholar 

  • Smith AS, Gessert CF, Davis H, Deatherage BH (1958) DC potential of the membraneous labyrinth. Am J Physiol 193:203–206

    CAS  PubMed  Google Scholar 

  • Söderström B, Skoog K, Blom H, Weiss DS, Heijne G von, Daley DO (2014) Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol 92:1–9

  • Sosinsky G (1995) Mixing of connexins in gap junction membrane channels. Proc Natl Acad Sci U S A 92:9210–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosinsky GE, Nicholson BJ (2005) Structural organization of gap junction channels. Biochim Biophys Acta 1711:99–125

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions co-assembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288:C613–C623

    Article  CAS  PubMed  Google Scholar 

  • Tasaki I, Spyropoulos CS (1959) Stria vascularis as source of endocochlear potential. J Neurophysiol 22:149–155

    CAS  PubMed  Google Scholar 

  • Thönnissen E, Rabionet R, Arbonès ML, Estivill X, Willecke K, Ott T (2002) Human connexin26 (GJB2) deafness mutations affect the function of gap junction channels at different levels of protein expression. Hum Genet 111:190–197

    Article  PubMed  Google Scholar 

  • Tylstedt S, Kinnefors A, Rask-Andersen H (1997) Neural interaction in the human spiral ganglion: a TEM study. Acta Otolaryngol 117:505–512

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol (Lond) 576:11–21

    Article  CAS  Google Scholar 

  • Wangemann P, Liu J, Marcus DC (1995) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29

    Article  CAS  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–50

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012) Global estimates on prevalence of hearing loss. Mortality and burden of diseases and prevention of blindness and deafness. WHO, Geneva

    Google Scholar 

  • Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signaling and metabolic communications. Eur J Neurosci 21:1859–1868

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao HB, Santos-Sacchi J (2000) Voltage gating of gap junctions in cochlear supporting cells: evidence for nonhomotypic channels. J Membr Biol 175:17–24

    Article  CAS  PubMed  Google Scholar 

  • Zhao HB, Yu N (2006) Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol 499:506–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rudolf Glueckert or Helge Rask-Andersen.

Additional information

This study was supported by ALF grants from Uppsala University Hospital and Uppsala University and by the Foundation of “Tysta Skolan,” the Swedish Deafness Foundation (HRF) and generous private donations from Börje Runögård and David Giertz, Sweden. This work was also funded in part by Medel (Fuerstenweg 77a, 6020 Innsbruck, Austria). Funding was also provided by NIDCD (PS - U24DC011968). Imaging was performed with equipment maintained by the Science for Life Lab BioVis Platform, Uppsala University. For skillful art work we thank Karin Lodin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Image and data precision were evaluated by means of an EMCCD camera and SIM focus from ZEN calibration on 40-nm beads. A lateral precision of approximately 80 nm and 250 nm axially was obtained. (PPTX 72.4 kb)

ESM 2

3-D video recording of the SR-SIMZ-stacks of Cx26 and Cx30 protein expression in the lateral cochlear wall demonstrating the separate expression. (WMV 7.80 mb)

ESM 3

Confocal IHC show basal cells identified by their expression of Claudin (green), a TJ protein expressed selectively in the basal cells and type I fibrocytes. These TJs help to maintain the particular electrochemical environment of the intrastrial space. Marginal and intermediate cells express Na+−K+−ATPase (red). (PPTX 2.01 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Edin, F., Blom, H. et al. Super-resolution structured illumination fluorescence microscopy of the lateral wall of the cochlea: the Connexin26/30 proteins are separately expressed in man. Cell Tissue Res 365, 13–27 (2016). https://doi.org/10.1007/s00441-016-2359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2359-0

Keywords

Navigation