Skip to main content

Advertisement

Log in

Retinopathy in Parkinson disease

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

One of the non-motor manifestations of PD is visual system involvement. Foveal vision is a main contributor to both visual recognition and discrimination and to both overt and covert visual attention. Experimental evidence from humans and monkeys shows that D1 and D2 receptors are essential for retinal ganglion cell receptive field organization. The evidence linking retinopathy and foveal visual impairment in PD is discussed. A model of retinal preganglionic dopaminergic circuitry is presented. Experimental evidence in humans, using Optical Coherence Tomography shows morphological changes of retinal neurons, including ganglion cells in PD. The diagnosis of pre-cardinal stage of PD (PCPD) may take advantage of the wide availability of optical coherence tomography as a potential biomarker. Fourier-domain OCT and visual testing may contribute a quantitative approach to the early diagnosis, the effects of treatment and follow-up of progression of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altintas O, Iseri P, Ozkan B, Caglar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinsons disease. Doc Ophthalmol 1116:137–146

    Article  Google Scholar 

  • Antal A, Pfeiffer R, Bodis-Wollner I (1996) Simultaneously evoked primary and cognitive visual evoked potentials distinguish younger and older patients with Parkinson’s disease. J Neural Trans 103:1053–1067

    Article  CAS  Google Scholar 

  • Berisha F, Feke GT, Trempe CL et al (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289

    Article  PubMed  Google Scholar 

  • Birch J, Kolle RU, Kunkel M, Paulus W, Upadhyay P (1998) Acquired colour deficiency in patients with Parkinson’s disease. Vision Res 38:3421–3426

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal EZ, Williams JM, Weinreb RN et al (2000) Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 107:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Bobak P, Bodis-Wollner I, Harnois C et al (1983) Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96:72–83

    CAS  PubMed  Google Scholar 

  • Bodis-Wollner I (1972) Visual acuity and contrast sensitivity in patients with cerebral lesions. Science 178:769–771

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I (1990) Visual deficit related to dopamine deficiency in experimental animals and Parkinson’s disease. Trends Neurosci 13:296–301

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I (2008) Diagnosing and treating early: is there a pre-cardinal stage of Parkinson disease? Parkinson Rep 19:9–10

    Google Scholar 

  • Bodis-Wollner I, Diamond S (1976) The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 99:695–710

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I, Tzelepi A (1998) The push-pull action of dopamine on spatial tuning of the monkey retina: the effects of dopaminergic deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram. Vision Res 38:1479–1487

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I, Tzelepi A (2002) Push-pull model of Dopamine’s action in the retina in: models of the visual system. Hung GK, Ciuffreda KJ (eds) Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow. Chapter 5, pp 191–214

  • Bodis-Wollner I, Tzelepi A (2005) The effect of diverse dopamine receptors on spatial processing in the central retina: a model. Chapter 17. In: Jenkin M, Harris L (eds) Seeing spatial form. Oxford University Press, New York, NY

    Google Scholar 

  • Bodis-Wollner I, Yahr MD (1978) Measurement of visual evoked potentials in Parkinson’s disease. Brain 101:661–671

    Article  CAS  PubMed  Google Scholar 

  • Bodis-Wollner I, Marx MS, Mitra S et al (1987) Visual dysfunction in Parkinsons disease. Brain 110:1675–1698

    Article  PubMed  Google Scholar 

  • Bodis-Wollner I, Brannan JR, Storch RL, Hajee M, Minko M (2009) The effect of background spatial contrast on electroretinographic responses in the human retina. Vision Res 49(9):922–930

    Article  PubMed  Google Scholar 

  • Bodis-Wollner I, Yahr MD, Mylin LH, Thornton J (1982) Dopaminergic deficiency and delayed visual evoked potentials in humans. Ann Neurol 11:478–483

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Bratzke H et al (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249:1–5

    Article  Google Scholar 

  • Bulens C, Meerwaldt JD, van der Wildt GJ, Keemink CJ (1986) Contrast sensitivity in Parkinson’s disease. Neurology 36:1121–1125

    CAS  PubMed  Google Scholar 

  • Buttner T, Kuhn W, Muller T, Heinze T, Puhl C, Przuntek H (1996) Chromatic and achromatic visual evoked potentials in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 100:443–447

    CAS  PubMed  Google Scholar 

  • Dacey DM (1988) Dopamine-accumulating retinal neurons revealed by in vitro fluorescence display a unique morphology. Science 240(4856):1196–1198

    Article  CAS  PubMed  Google Scholar 

  • Davenport CM, Detwiler PB, Dacey DM (2007) Functional polarity of dendrites and axons of primate A1 amacrine cells. Vis Neurosci 24:449–457

    Article  PubMed  Google Scholar 

  • Djamgoz MB, Hankins MW, Hirano J et al (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529

    Article  CAS  PubMed  Google Scholar 

  • Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187(3):517–552

    CAS  PubMed  Google Scholar 

  • Frederick JM, Rayborn ME, Laties AM, Lam DM, Hollyfield JG (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210(1):65–79

    Article  CAS  PubMed  Google Scholar 

  • Ghilardi MF, Bodis-Wollner I, Onofrj MC et al (1988) Spatial frequency dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 3:131–184

    Article  Google Scholar 

  • Ghilardi MF, Marx MS, Bodis-Wollner I et al (1989) The effect of intraocular 6-hydroxydopamine on retinal processing of primates. Ann Neurol 25:357–364

    Article  CAS  PubMed  Google Scholar 

  • Hajee M, March W, Lazzaro D, Wolintz A, Shrier E, Glazman S, Bodis-Wollner I (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127(6):737–741

    Article  PubMed  Google Scholar 

  • Hampson EC, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4911–4922

    CAS  PubMed  Google Scholar 

  • Harnois C, DiPaolo T (1990) Decreased dopamine in the retinas of patients with Parkinsons disease. Invest Ophthalmol Vis Sci 31:2473–2475

    CAS  PubMed  Google Scholar 

  • Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and anterograde changes of morphology after intercranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 5:483–493

    Google Scholar 

  • Hutton JT, Morris JL, Elias JW (1993) Levodopa improves spatial contrast sensitivity in Parkinson’s disease. Arch Neurol 50:721–724

    CAS  PubMed  Google Scholar 

  • Ikeda H, Head GM, Ellis CJ (1994) Electrophysiological signs of retinal dopamine deficiency in recently diagnosed Parkinson’s disease and a follow up study. Vision Res 34:2629–2638

    Article  CAS  PubMed  Google Scholar 

  • Inzelberg R, Ramirez JA, Nisipeanu P et al (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44:2793–2797

    Article  PubMed  Google Scholar 

  • Krizaj D, Gábriel R, Owen WG, Witkovsky P (1988) Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina. J Comp Neurol 398(4):529–538

    Article  Google Scholar 

  • Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 1:37–68

    Google Scholar 

  • Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59:423–425

    Article  CAS  PubMed  Google Scholar 

  • Marx M, Bodis-Wollner I, Bobak P, Harnois C (1986) Temporal frequency-dependent VEP changes in Parkinson’s disease. Vision Res 26:185–193

    Article  CAS  PubMed  Google Scholar 

  • Masson G, Mestre D, Blin O (1993) Dopaminergic modulation of visual sensitivity in man. Fundam Clin Pharmacol 7(8):449–463

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Legros J (1988) Functional neuroarchitecture of the retina: hypothesis on the dysfunction of retinal dopaminergic circuitry in Parkinson’s disease. Surg Radiol Anat 10(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Legros J, Simon A, Caillé I, Bloch B (1997) Immunocytochemical localization of dopamine D1 receptors in the retina of mammals. Vis Neurosci 14(3):545–551

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Legros J, Versaux-Botteri C, Vernier P (1999) Dopamine receptor localization in the mammalian retina. Mol Neurobiol 19(3):181–204

    Article  CAS  PubMed  Google Scholar 

  • Onofrj M, Bodis-Wollner I (1982) Dopaminergic deficiency causes delayed VEPs in rats. Ann Neurol 11:484–490

    Article  CAS  PubMed  Google Scholar 

  • Onofrj M, Ghilardi MF, Basciani M, Gambi D (1986) Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dep endent dopamine function in humans. J Neurol Neurosurg Psychiatry 49(10):1150–1159

    Article  CAS  PubMed  Google Scholar 

  • Peppe A, Antal A, Tagliati M, Stanzione P, Bodis-Wollner I (1998a) Dl agonist CY208–243 attenuates the PERG to low spatial frequency stimuli in the monkey. Neurosci Lett 242:1–4

    Article  Google Scholar 

  • Peppe A, Stanzione P, Pierantozzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolino M, Bernardi G (1998b) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106(4):374–382

    Article  CAS  PubMed  Google Scholar 

  • Price M, Feldman R, Adelberg D, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890

    CAS  PubMed  Google Scholar 

  • Regan D, Maxner C (1987) Orientation-selective visual loss in patients with Parkinson’s disease. Brain 110(Pt 2):415–432

    Article  PubMed  Google Scholar 

  • Regan D, Neima D (1984) Low-contrast letter charts in early diabetic retinopathy, ocular hypertension, glaucoma, and Parkinson’s disease. Br J Ophthalmol 68(12):885–889

    Article  CAS  PubMed  Google Scholar 

  • Sartucci F, Orlandi G, Lucetti C et al (2003) Changes in pattern electroretinograms to equiluminant red-green and blue-yellow gratings in patients with early Parkinson’s disease. J Clin Neurophysiol 20:375–381

    Article  PubMed  Google Scholar 

  • Schulman JS, Pedut-Kloizman T, Hertzmark E et al (1996) Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 103:1889–1898

    Google Scholar 

  • Silva MF, Faria P, Regateiro FS, Forjaz V, Januário C, Freire A, Castelo-Branco M (2005) Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease. Brain 128:2260–2271

    Article  CAS  PubMed  Google Scholar 

  • Skirboll LR, Grace AA, Bunney BS (1977) Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists. Science 206:80–82

    Article  Google Scholar 

  • Stanzione P, Pierantozzi M, Semprini R, Tagliati M, Traversa R, Peppe A et al (1995) Increasing doses of l-sulpiride reveal dose- and spatial frequency-dependent effects of D2 selective blockade in the human electroretinogram. Vision Res 35:2659–2664

    Article  CAS  PubMed  Google Scholar 

  • Tagliati M, Bodis-Wollner I, Yahr MD (1996) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol 100:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tagliati M, Bodis-Wollner I, Kovanecz I, Stanzione P (1994) Spatial frequency tuning of the monkey pattern ERG depends on D2 receptor-linked action of dopamine. Vision Res 34:2051–2057

    Article  CAS  PubMed  Google Scholar 

  • Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E (1984) VEP changes in Parkinson’s disease are stimulus dependent. J Neurol Neurosurg Psychiatry 47(3):305–307

    Article  CAS  PubMed  Google Scholar 

  • Tartaglione A, Oneto A, Bandini F, Favale E (1987) Visual evoked potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 50(9):1243–1244

    Article  CAS  PubMed  Google Scholar 

  • Valenti DA (2007) Neuroimaging of retinal nerve fiber layer in AD using optical coherence tomography. Neurology 69:1060

    Article  PubMed  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–39

    Article  PubMed  Google Scholar 

  • Witkovsky P, Gabriel R, Krizaj D, Akopian A (1995) Feedback from luminosity horizontal cells mediates depolarizing responses of chromaticity horizontal cells in the Xenopus retina. Proc Natl Acad Sci USA 92(8):3556–3560

    Article  CAS  PubMed  Google Scholar 

  • Wojtkowski M, Srinivasan V, Fujimoto J et al (2005) Three-dimensional retinal imaging with high speed ultrahigh resolution optical coherence tomography. Ophthalmology 112:1734–1746

    Article  PubMed  Google Scholar 

  • Yavas GF, Yilmaz O, Küsbeci T, Oztürk F (2007) The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 17:812–816

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Bodis-Wollner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodis-Wollner, I. Retinopathy in Parkinson disease. J Neural Transm 116, 1493–1501 (2009). https://doi.org/10.1007/s00702-009-0292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0292-z

Keywords

Navigation