Skip to main content
Log in

Progress in developing transgenic monkey model for Huntington’s disease

  • Translational Neurosciences - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a complex neurodegenerative disorder that has no cure. Although treatments can often be given to relieve symptoms, the neuropathology associated with HD cannot be stopped or reversed. HD is characterized by degeneration of the striatum and associated pathways that leads to impairment in motor and cognitive functions as well as psychiatric disturbances. Although cell and rodent models for HD exist, longitudinal study in a transgenic HD nonhuman primate (i.e., rhesus macaque; HD monkeys) shows high similarity in its progression with human patients. Progressive brain atrophy and changes in white matter integrity examined by magnetic resonance imaging are coherent with the decline in cognitive behaviors related to corticostriatal functions and neuropathology. HD monkeys also express higher anxiety and irritability/aggression similar to human HD patients that other model systems have not yet replicated. While a comparative model approach is critical for advancing our understanding of HD pathogenesis, HD monkeys could provide a unique platform for preclinical studies and long-term assessment of translatable outcome measures. This review summarizes the progress in the development of the transgenic HD monkey model and the opportunities for advancing HD preclinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal M, Duan W, Hou Z, Rakesh N, Peng Q, Ross CA, Miller MI, Mori S, Zhang J (2012) Spatiotemporal mapping of brain atrophy in mouse models of Huntington’s disease using longitudinal in vivo magnetic resonance imaging. Neuroimage 60(4):2086–2095. doi:10.1016/j.neuroimage.2012.01.141

    Article  PubMed  PubMed Central  Google Scholar 

  • Akopian G, Barry J, Cepeda C, Levine MS (2016) Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington’s disease. J Neurosci Res 94(12):1400–1410. doi:10.1002/jnr.23889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov V, Brunner D, Menalled LB, Kudwa A, Watson-Johnson J, Mazzella M, Russell I, Ruiz MC, Torello J, Sabath E, Sanchez A, Gomez M, Filipov I, Cox K, Kwan M, Ghavami A, Ramboz S, Lager B, Wheeler VC, Aaronson J, Rosinski J, Gusella JF, MacDonald ME, Howland D, Kwak S (2016) Large-scale phenome analysis defines a behavioral signature for Huntington’s disease genotype in mice. Nat Biotechnol 34(8):838–844. doi:10.1038/nbt.3587

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer A (1911) Uber die anatomische Grundlage der Huntington’schen Chorea und der choreaischen Bewegung uberhaupt. Neurol Centralblatt 30:891–892

    Google Scholar 

  • Ament SA, Pearl JR, Grindeland A, St Claire J, Earls JC, Kovalenko M, Gillis T, Mysore J, Gusella JF, Lee JM, Kwak S, Howland D, Lee MY, Baxter D, Scherler K, Wang K, Geman D, Carroll JB, MacDonald ME, Carlson G, Wheeler VC, Price ND, Hood LE (2017) High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington’s disease CAG knock-in mice across multiple genetic backgrounds. Hum Mol Genet 26(5):913–922. doi:10.1093/hmg/ddx0063045004

    Article  CAS  PubMed  Google Scholar 

  • An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263. doi:10.1016/j.stem.2012.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M (1994) Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 14(6):3969–3984

    CAS  PubMed  Google Scholar 

  • Apicella P (2007) Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 30(6):299–306. doi:10.1016/j.tins.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  • Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ (2015) Huntington disease. Nat Rev Dis Primers 1:15005. doi:10.1038/nrdp.2015.5

    Article  PubMed  Google Scholar 

  • Beglinger LJ, Duff K, Allison J, Theriault D, O’Rourke JJ, Leserman A, Paulsen JS (2010) Cognitive change in patients with Huntington disease on the repeatable battery for the assessment of neuropsychological status. J Clin Exp Neuropsychol 32(6):573–578. doi:10.1080/13803390903313564

    Article  PubMed  Google Scholar 

  • Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5(4):382–389

    Article  CAS  PubMed  Google Scholar 

  • Berrios GE, Wagle AC, Markova IS, Wagle SA, Ho LW, Rubinsztein DC, Whittaker J, Ffrench-Constant C, Kershaw A, Rosser A, Bak T, Hodges JR (2001) Psychiatric symptoms and CAG repeats in neurologically asymptomatic Huntington’s disease gene carriers. Psychiatry Res 102(3):217–225

    Article  CAS  PubMed  Google Scholar 

  • Biglan KM, Zhang Y, Long JD, Geschwind M, Kang GA, Killoran A, Lu W, McCusker E, Mills JA, Raymond LA, Testa C, Wojcieszek J, Paulsen JS (2013) Refining the diagnosis of Huntington disease: the PREDICT-HD study. Front Aging Neurosci 5:12. doi:10.3389/fnagi.2013.00012

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjorkqvist M, Wild EJ, Thiele J, Silvestroni A, Andre R, Lahiri N, Raibon E, Lee RV, Benn CL, Soulet D, Magnusson A, Woodman B, Landles C, Pouladi MA, Hayden MR, Khalili-Shirazi A, Lowdell MW, Brundin P, Bates GP, Leavitt BR, Moller T, Tabrizi SJ (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington’s disease. J Exp Med 205(8):1869–1877. doi:10.1084/jem.20080178jem.20080178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouwens JA, van Duijn E, van der Mast RC, Roos RA, Giltay EJ (2015) Irritability in a prospective cohort of Huntington’s disease mutation carriers. J Neuropsychiatry Clin Neurosci 27(3):206–212. doi:10.1176/appi.neuropsych.14030051

    Article  PubMed  Google Scholar 

  • Canales JJ, Graybiel AM (2000) A measure of striatal function predicts motor stereotypy. Nat Neurosci 3(4):377–383. doi:10.1038/73949

    Article  CAS  PubMed  Google Scholar 

  • Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19(8):3248–3257

    CAS  PubMed  Google Scholar 

  • Carter RL, Chen Y, Kunkanjanawan T, Xu Y, Moran SP, Putkhao K, Yang J, Huang AH, Parnpai R, Chan AW (2014) Reversal of cellular phenotypes in neural cells derived from Huntington’s disease monkey-induced pluripotent stem cells. Stem Cell Rep 3(4):585–593. doi:10.1016/j.stemcr.2014.07.011

    Article  CAS  Google Scholar 

  • Cepeda C, Galvan L, Holley SM, Rao SP, Andre VM, Botelho EP, Chen JY, Watson JB, Deisseroth K, Levine MS (2013) Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J Neurosci 33(17):7393–7406. doi:10.1523/JNEUROSCI.2137-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan AW, Xu Y, Jiang J, Rahim T, Zhao D, Kocerha J, Chi T, Moran S, Engelhardt H, Larkin K, Neumann A, Cheng H, Li C, Nelson K, Banta H, Zola SM, Villinger F, Yang J, Testa CM, Mao H, Zhang X, Bachevalier J (2014) A two years longitudinal study of a transgenic Huntington disease monkey. BMC Neurosci 15:36. doi:10.1186/1471-2202-15-361471-2202-15-36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan AW, Jiang J, Chen Y, Li C, Prucha MS, Hu Y, Chi T, Moran S, Rahim T, Li S, Li X, Zola SM, Testa CM, Mao H, Villalba R, Smith Y, Zhang X, Bachevalier J (2015) Progressive cognitive deficit, motor impairment and striatal pathology in a transgenic Huntington disease monkey model from infancy to adulthood. PLoS One 10(5):e0122335. doi:10.1371/journal.pone.0122335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciamei A, Detloff PJ, Morton AJ (2015) Progression of behavioural despair in R6/2 and Hdh knock-in mouse models recapitulates depression in Huntington’s disease. Behav Brain Res 291:140–146. doi:10.1016/j.bbr.2015.05.010

    Article  PubMed  Google Scholar 

  • Cloud LJ, Rosenblatt A, Margolis RL, Ross CA, Pillai JA, Corey-Bloom J, Tully HM, Bird T, Panegyres PK, Nichter CA, Higgins DS Jr, Helmers SL, Factor SA, Jones R, Testa CM (2012) Seizures in juvenile Huntington’s disease: frequency and characterization in a multicenter cohort. Mov Disord 27(14):1797–1800. doi:10.1002/mds.25237

    Article  PubMed  Google Scholar 

  • Crook ZR, Housman D (2011) Huntington’s disease: can mice lead the way to treatment? Neuron 69(3):423–435. doi:10.1016/j.neuron.2010.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crook ZR, Housman DE (2013) Surveying the landscape of Huntington’s disease mechanisms, measurements, and medicines. J Huntingtons Dis 2(4):405–436. doi:10.3233/JHD-130072

    PubMed  Google Scholar 

  • Dale M, van Duijn E (2015) Anxiety in Huntington’s disease. J Neuropsychiatry Clin Neurosci 27(4):262–271. doi:10.1176/appi.neuropsych.14100265

    Article  PubMed  Google Scholar 

  • Davies S, Ramsden DB (2001) Huntington’s disease. Mol Pathol 54(6):409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  CAS  PubMed  Google Scholar 

  • Deng YP, Albin RL, Penney JB, Young AB, Anderson KD, Reiner A (2004) Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 27(3):143–164. doi:10.1016/j.jchemneu.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  • Di Maio L, Squitieri F, Napolitano G, Campanella G, Trofatter JA, Conneally PM (1993) Suicide risk in Huntington’s disease. J Med Genet 30(4):293–295

    Article  PubMed  PubMed Central  Google Scholar 

  • DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Gross K, Qiao F, Ferguson J, Callegari EA, Rezvani K, Zhang D, Gloeckner CJ, Ueffing M, Wang H (2012) Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity. J Neurochem 123(3):437–446. doi:10.1111/j.1471-4159.2012.07919.x

    Article  CAS  PubMed  Google Scholar 

  • Duff K, Beglinger LJ, Theriault D, Allison J, Paulsen JS (2010) Cognitive deficits in Huntington’s disease on the Repeatable Battery for the Assessment of Neuropsychological Status. J Clin Exp Neuropsychol 32(3):231–238. doi:10.1080/13803390902926184

    Article  PubMed  Google Scholar 

  • Dumas EM, van den Bogaard SJ, Hart EP, Soeter RP, van Buchem MA, van der Grond J, Rombouts SA, Roos RA (2013) Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. Neuroimage Clin 2:377–384. doi:10.1016/j.nicl.2013.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueredo-Cardenas G, Morello M, Sancesario G, Bernardi G, Reiner A (1996) Colocalization of somatostatin, neuropeptide Y, neuronal nitric oxide synthase and NADPH-diaphorase in striatal interneurons in rats. Brain Res 735(2):317–324

    Article  CAS  PubMed  Google Scholar 

  • Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L, Dunbar GL (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4(5):130. doi:10.1186/scrt341scrt341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folstein S, Abbott MH, Chase GA, Jensen BA, Folstein MF (1983) The association of affective disorder with Huntington’s disease in a case series and in families. Psychol Med 13(3):537–542

    Article  CAS  PubMed  Google Scholar 

  • Forrest CM, Mackay GM, Stoy N, Spiden SL, Taylor R, Stone TW, Darlington LG (2010) Blood levels of kynurenines, interleukin-23 and soluble human leucocyte antigen-G at different stages of Huntington’s disease. J Neurochem 112(1):112–122. doi:10.1111/j.1471-4159.2009.06442.x

    Article  CAS  PubMed  Google Scholar 

  • Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 33(47):18531–18539. doi:10.1523/JNEUROSCI.1278-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33(4):668–677. doi:10.1111/j.1460-9568.2010.07564.x

    Article  PubMed  Google Scholar 

  • Geevasinga N, Richards FH, Jones KJ, Ryan MM (2006) Juvenile Huntington disease. J Paediatr Child Health 42(9):552–554. doi:10.1111/j.1440-1754.2006.00921.x

    Article  PubMed  Google Scholar 

  • Gil JM, Rego AC (2008) Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 27(11):2803–2820. doi:10.1111/j.1460-9568.2008.06310.x

    Article  PubMed  Google Scholar 

  • Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327(1–2):307–311

    Article  CAS  PubMed  Google Scholar 

  • Graveland GA, Williams RS, DiFiglia M (1985) A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 234(3):317–333. doi:10.1002/cne.902340304

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci USA 75(11):5723–5726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Jie S, Colby DW (2012) Protein misfolding detected early in pathogenesis of transgenic mouse model of Huntington disease using amyloid seeding assay. J Biol Chem 287(13):9982–9989. doi:10.1074/jbc.M111.305417

    Article  CAS  PubMed  Google Scholar 

  • Hauser MD (1991) Sources of acoustic variation in rhesus macaque (Macaca mulatta) vocalizations. Ethology 89:29–46

    Article  Google Scholar 

  • Hewitt W (1961) The development of the human internal capsule and lentiform nucleus. J Anat 95:191–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho AK, Sahakian BJ, Brown RG, Barker RA, Hodges JR, Ane MN, Snowden J, Thompson J, Esmonde T, Gentry R, Moore JW, Bodner T (2003) Profile of cognitive progression in early Huntington’s disease. Neurology 61(12):1702–1706

    Article  CAS  PubMed  Google Scholar 

  • Holter SM, Stromberg M, Kovalenko M, Garrett L, Glasl L, Lopez E, Guide J, Gotz A, Hans W, Becker L, Rathkolb B, Rozman J, Schrewed A, Klingenspor M, Klopstock T, Schulz H, Wolf E, Wursta W, Gillis T, Wakimoto H, Seidman J, MacDonald ME, Cotman S, Gailus-Durner V, Fuchs H, de Angelis MH, Lee JM, Wheeler VC (2013) A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington’s disease CAG knock-in mice. PLoS One 8(11):e80923. doi:10.1371/journal.pone.0080923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howland DS, Munoz-Sanjuan I (2014) Mind the gap: models in multiple species needed for therapeutic development in Huntington’s disease. Mov Disord 29(11):1397–1403. doi:10.1002/mds.26008

    Article  PubMed  Google Scholar 

  • Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science 345(6196):1255263. doi:10.1126/science.1255263

    Article  PubMed  CAS  Google Scholar 

  • Huntington G (1872) On chorea. Med Surg Rep 26:317–321

    Google Scholar 

  • Jelgersma G (1908) Uber anatomische Befunde bei Paralyis agitans und bei chronischer Chorea. Neurol Contralblatt 27:995–996

    Google Scholar 

  • Jennings CG, Landman R, Zhou Y, Sharma J, Hyman J, Movshon JA, Qiu Z, Roberts AC, Roe AW, Wang X, Zhou H, Wang L, Zhang F, Desimone R, Feng G (2016) Opportunities and challenges in modeling human brain disorders in transgenic primates. Nat Neurosci 19(9):1123–1130. doi:10.1038/nn.4362nn.4362

    Article  PubMed  CAS  Google Scholar 

  • Kalin NH, Shelton SE (1998) Ontogeny and stability of separation and threat-induced defensive behaviors in rhesus monkeys during the first year of life. Am J Primatol 44(2):125–135. doi:10.1002/(SICI)1098-2345(1998)44:2<125:AID-AJP3>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Emson PC (1989) Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 62(5):1052–1068

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18(12):527–535

    Article  CAS  PubMed  Google Scholar 

  • Killoran A, Biglan KM (2012) Therapeutics in Huntington’s disease. Curr Treat Options Neurol. doi:10.1007/s11940-012-0165-x

    PubMed  Google Scholar 

  • Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374(4):578–592. doi:10.1002/(SICI)1096-9861(19961028)374:4<578:AID-CNE7>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  • Kocerha J, Liu Y, Willoughby D, Chidamparam K, Benito J, Nelson K, Xu Y, Chi T, Engelhardt H, Moran S, Yang SH, Li SH, Li XJ, Larkin K, Neumann A, Banta H, Yang JJ, Chan AW (2013) Longitudinal transcriptomic dysregulation in the peripheral blood of transgenic Huntington’s disease monkeys. BMC Neurosci 14:88. doi:10.1186/1471-2202-14-88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar A, Zhang J, Tallaksen-Greene S, Crowley MR, Crossman DK, Morton AJ, Van Groen T, Kadish I, Albin RL, Lesort M, Detloff PJ (2016) Allelic series of Huntington’s disease knock-in mice reveals expression discorrelates. Hum Mol Genet 25(8):1619–1636. doi:10.1093/hmg/ddw040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunkanjanawan T, Carter RL, Prucha MS, Yang J, Parnpai R, Chan AW (2016) miR-196a ameliorates cytotoxicity and cellular phenotype in transgenic Huntington’s disease monkey neural cells. PLoS One 11(9):e0162788. doi:10.1371/journal.pone.0162788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laforet GA, Sapp E, Chase K, McIntyre C, Boyce FM, Campbell M, Cadigan BA, Warzecki L, Tagle DA, Reddy PH, Cepeda C, Calvert CR, Jokel ES, Klapstein GJ, Ariano MA, Levine MS, DiFiglia M, Aronin N (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J Neurosci 21(23):9112–9123

    CAS  PubMed  Google Scholar 

  • Lanciego JL, Luquin N, Obeso JA (2012) Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med 2(12):a009621. doi:10.1101/cshperspect.a009621a009621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langbehn DR, Hayden MR, Paulsen JS (2010) CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 153B(2):397–408. doi:10.1002/ajmg.b.30992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange HW, Aulich A (1986) Die Hirnatrophie bei der Huntingtonschen Keankheit. In: Die Huntingtonsche Krankheit. Hippokrates, Stuttgart, pp 25–41

  • Lange KW, Sahakian BJ, Quinn NP, Marsden CD, Robbins TW (1995) Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. J Neurol Neurosurg Psychiatry 58(5):598–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW (1996) Executive and mnemonic functions in early Huntington’s disease. Brain 119(Pt 5):1633–1645

    Article  PubMed  Google Scholar 

  • Lawrence AD, Hodges JR, Rosser AE, Kershaw A, Ffrench-Constant C, Rubinsztein DC, Robbins TW, Sahakian BJ (1998) Evidence for specific cognitive deficits in preclinical Huntington’s disease. Brain 121(Pt 7):1329–1341

    Article  PubMed  Google Scholar 

  • Lee K, Holley SM, Shobe JL, Chong NC, Cepeda C, Levine MS, Masmanidis SC (2017) Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93(6):1451–1463. doi:10.1016/j.neuron.2017.02.033

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li XJ (2006) Multiple pathways contribute to the pathogenesis of Huntington disease. Mol Neurodegener 1:19. doi:10.1186/1750-1326-1-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li SH, Yu ZX, Li CL, Nguyen HP, Zhou YX, Deng C, Li XJ (2003) Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington’s disease. J Neurosci 23(17):6956–6964

    CAS  PubMed  Google Scholar 

  • Lim SA, Kang UJ, McGehee DS (2014) Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 6:22. doi:10.3389/fnsyn.2014.00022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345(8942):91–95

    Article  CAS  PubMed  Google Scholar 

  • Lione LA, Carter RJ, Hunt MJ, Bates GP, Morton AJ, Dunnett SB (1999) Selective discrimination learning impairments in mice expressing the human Huntington’s disease mutation. J Neurosci 19(23):10428–10437

    CAS  PubMed  Google Scholar 

  • MacDonald ME, Barnes G, Srinidhi J, Duyao MP, Ambrose CM, Myers RH, Gray J, Conneally PM, Young A, Penney J et al (1993) Gametic but not somatic instability of CAG repeat length in Huntington’s disease. J Med Genet 30(12):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  CAS  PubMed  Google Scholar 

  • Maurice N, Liberge M, Jaouen F, Ztaou S, Hanini M, Camon J, Deisseroth K, Amalric M, Kerkerian-Le Goff L, Beurrier C (2015) Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism. Cell Rep 13(4):657–666. doi:10.1016/j.celrep.2015.09.034

    Article  CAS  PubMed  Google Scholar 

  • Menalled L, Brunner D (2014) Animal models of Huntington’s disease for translation to the clinic: best practices. Mov Disord 29(11):1375–1390. doi:10.1002/mds.26006

    Article  PubMed  Google Scholar 

  • Meng Y, Jiang J, Bachevalier J, Zhang X, Chan AW (2017) Developmental whole brain white matter alterations in transgenic Huntington’s disease monkey. Sci Rep 7(1):379. doi:10.1038/s41598-017-00381-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran S, Chi T, Prucha MS, Ahn KS, Connor-Stroud F, Jean S, Gould K, Chan AW (2015) Germline transmission in transgenic Huntington’s disease monkeys. Theriogenology 84(2):277–285. doi:10.1016/j.theriogenology.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton AJ, Howland DS (2013) Large genetic animal models of Huntington’s disease. J Huntingtons Dis 2(1):3–19. doi:10.3233/JHD-130050

    PubMed  Google Scholar 

  • Nance MA, Myers RH (2001) Juvenile onset Huntington’s disease–clinical and research perspectives. Ment Retard Dev Disabil Res Rev 7(3):153–157. doi:10.1002/mrdd.1022

    Article  CAS  PubMed  Google Scholar 

  • Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. doi:10.1016/j.cell.2014.01.027

    Google Scholar 

  • Niu Y, Guo X, Chen Y, Wang CE, Gao J, Yang W, Kang Y, Si W, Wang H, Yang SH, Li S, Ji W, Li XJ (2015) Early Parkinson’s disease symptoms in alpha-synuclein transgenic monkeys. Hum Mol Genet 24(8):2308–2317. doi:10.1093/hmg/ddu748

    Article  CAS  PubMed  Google Scholar 

  • Oakeshott S, Farrar A, Port R, Cummins-Sutphen J, Berger J, Watson-Johnson J, Ramboz S, Howland D, Brunner D (2013) Deficits in a simple visual go/no-go discrimination task in two mouse models of Huntington’s disease. PLoS Curr. doi:10.1371/currents.hd.fe74c94bdd446a0470f6f905a30b5dd1ecurrents.hd.fe74c94bdd446a0470f6f905a30b5dd1

    Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366(4):580–599. doi:10.1002/(SICI)1096-9861(19960318)366:4<580:AID-CNE3>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  • Paulsen JS, Nehl C, Hoth KF, Kanz JE, Benjamin M, Conybeare R, McDowell B, Turner B (2005) Depression and stages of Huntington’s disease. J Neuropsychiatry Clin Neurosci 17(4):496–502. doi:10.1176/jnp.17.4.496

    Article  PubMed  Google Scholar 

  • Paulsen JS, Smith MM, Long JD (2013) Cognitive decline in prodromal Huntington disease: implications for clinical trials. J Neurol Neurosurg Psychiatry 84(11):1233–1239. doi:10.1136/jnnp-2013-305114

    Article  PubMed  PubMed Central  Google Scholar 

  • Peavy GM, Jacobson MW, Goldstein JL, Hamilton JM, Kane A, Gamst AC, Lessig SL, Lee JC, Corey-Bloom J (2010) Cognitive and functional decline in Huntington’s disease: dementia criteria revisited. Mov Disord 25(9):1163–1169. doi:10.1002/mds.22953

    Article  PubMed  PubMed Central  Google Scholar 

  • Penny GR, Wilson CJ, Kitai ST (1988) Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum. J Comp Neurol 269(2):275–289. doi:10.1002/cne.902690211

    Article  CAS  PubMed  Google Scholar 

  • Petryszyn S, Beaulieu JM, Parent A, Parent M (2014) Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 59–60:51–61. doi:10.1016/j.jchemneu.2014.06.002

    Article  PubMed  CAS  Google Scholar 

  • Petryszyn S, Parent A, Parent M (2017) The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. J Neural Transm (Vienna). doi:10.1007/s00702-017-1687-x10.1007/s00702-017-1687-x

    Google Scholar 

  • Pfefferle D, Kazem AJ, Brockhausen RR, Ruiz-Lambides AV, Widdig A (2014) Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Curr Biol 24(15):1806–1810. doi:10.1016/j.cub.2014.06.058S0960-9822(14)00774-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philips T, Rothstein JD, Pouladi MA (2014) Preclinical models: needed in translation? A Pro/Con debate. Mov Disord 29(11):1391–1396. doi:10.1002/mds.26010

    Article  PubMed  Google Scholar 

  • Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14(10):708–721. doi:10.1038/nrn3570nrn3570

    Article  CAS  PubMed  Google Scholar 

  • Preisig DF, Kulic L, Kruger M, Wirth F, McAfoose J, Spani C, Gantenbein P, Derungs R, Nitsch RM, Welt T (2016) High-speed video gait analysis reveals early and characteristic locomotor phenotypes in mouse models of neurodegenerative movement disorders. Behav Brain Res 311:340–353. doi:10.1016/j.bbr.2016.04.044

    Article  PubMed  Google Scholar 

  • Putkhao K, Kocerha J, Cho IK, Yang J, Parnpai R, Chan AW (2013) Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington’s disease. Stem Cells Dev 22(8):1198–1205. doi:10.1089/scd.2012.0469

    Article  CAS  PubMed  Google Scholar 

  • Raper J, Wilson M, Sanchez M, Machado CJ, Bachevalier J (2013) Pervasive alterations of emotional and neuroendocrine responses to an acute stressor after neonatal amygdala lesions in rhesus monkeys. Psychoneuroendocrinology 38(7):1021–1035. doi:10.1016/j.psyneuen.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  • Raper J, Bosinger S, Johnson Z, Tharp G, Moran SP, Chan AW (2016) Increased irritability, anxiety, and immune reactivity in transgenic Huntington’s disease monkeys. Brain Behav Immun 58:181–190. doi:10.1016/j.bbi.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribai P, Nguyen K, Hahn-Barma V, Gourfinkel-An I, Vidailhet M, Legout A, Dode C, Brice A, Durr A (2007) Psychiatric and cognitive difficulties as indicators of juvenile huntington disease onset in 29 patients. Arch Neurol 64(6):813–819. doi:10.1001/archneur.64.6.813

    Article  PubMed  Google Scholar 

  • Roos RA (2010) Huntington’s disease: a clinical review. Orphanet J Rare Dis 5(1):40. doi:10.1186/1750-1172-5-40

    Article  PubMed  PubMed Central  Google Scholar 

  • Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164(3):526–537. doi:10.1016/j.cell.2015.12.037S0092-8674(15)01701-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA (2004) Huntington’s disease: new paths to pathogenesis. Cell 118(1):4–7. doi:10.1016/j.cell.2004.06.022

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC, Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10(4):204–216. doi:10.1038/nrneurol.2014.24nrneurol.2014.24

    Article  CAS  PubMed  Google Scholar 

  • Rowell TE, Hinde RA (1962) Vocal communication by the rhesus monkey (Macaca mulatta). Proc Zool Soc Lond 138:279–294

    Article  Google Scholar 

  • Rub U, Hoche F, Brunt ER, Heinsen H, Seidel K, Del Turco D, Paulson HL, Bohl J, von Gall C, Vonsattel JP, Korf HW, den Dunnen WF (2013) Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathol 23(2):165–177. doi:10.1111/j.1750-3639.2012.00629.x

    Article  PubMed  CAS  Google Scholar 

  • Rub U, Seidel K, Vonsattel JP, Lange HW, Eisenmenger W, Gotz M, Del Turco D, Bouzrou M, Korf HW, Heinsen H (2015) Huntington’s disease (HD): neurodegeneration of Brodmann’s primary visual area 17 (BA17). Brain Pathol 25(6):701–711. doi:10.1111/bpa.12237

    Article  PubMed  CAS  Google Scholar 

  • Rub U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW (2016) Huntington’s disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol 26(6):726–740. doi:10.1111/bpa.12426

    Article  CAS  PubMed  Google Scholar 

  • Sapp E, Schwarz C, Chase K, Bhide PG, Young AB, Penney J, Vonsattel JP, Aronin N, DiFiglia M (1997) Huntingtin localization in brains of normal and Huntington’s disease patients. Ann Neurol 42(4):604–612. doi:10.1002/ana.410420411

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Parent A (1998) Efferent projections of single neurons in the external segment of the globus pallidus in monkeys. Neurosci Res 31(1):S173

    Article  Google Scholar 

  • Saydoff JA, Garcia RA, Browne SE, Liu L, Sheng J, Brenneman D, Hu Z, Cardin S, Gonzalez A, von Borstel RW, Gregorio J, Burr H, Beal MF (2006) Oral uridine pro-drug PN401 is neuroprotective in the R6/2 and N171-82Q mouse models of Huntington’s disease. Neurobiol Dis 24(3):455–465. doi:10.1016/j.nbd.2006.08.011

    Article  CAS  PubMed  Google Scholar 

  • Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8(3):397–407

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld M, Myers RH, Cupples LA, Berkman B, Sax DS, Clark E (1984) Increased rate of suicide among patients with Huntington’s disease. J Neurol Neurosurg Psychiatry 47(12):1283–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5(3):776–794

    CAS  PubMed  Google Scholar 

  • Shannon KM, Fraint A (2015) Therapeutic advances in Huntington’s disease. Mov Disord 30(11):1539–1546. doi:10.1002/mds.26331

    Article  PubMed  Google Scholar 

  • Sieradzan KA, Mechan AO, Jones L, Wanker EE, Nukina N, Mann DM (1999) Huntington’s disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp Neurol 156(1):92–99. doi:10.1006/exnr.1998.7005

    Article  CAS  PubMed  Google Scholar 

  • Slow EJ, Graham RK, Osmand AP, Devon RS, Lu G, Deng Y, Pearson J, Vaid K, Bissada N, Wetzel R, Leavitt BR, Hayden MR (2005) Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci USA 102(32):11402–11407. doi:10.1073/pnas.0503634102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith Y, Wichmann T, DeLong MR (2014) Corticostriatal and mesocortical dopamine systems: do species differences matter? Nat Rev Neurosci 15(1):63. doi:10.1038/nrn3469-c1nrn3469-c1

    Article  CAS  PubMed  Google Scholar 

  • Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, MacDonald ME, Gusella JF, Harper PS, Shaw DJ (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4(4):393–397. doi:10.1038/ng0893-393

    Article  CAS  PubMed  Google Scholar 

  • Solomon AC, Stout JC, Johnson SA, Langbehn DR, Aylward EH, Brandt J, Ross CA, Beglinger L, Hayden MR, Kieburtz K, Kayson E, Julian-Baros E, Duff K, Guttman M, Nance M, Oakes D, Shoulson I, Penziner E, Paulsen JS (2007) Verbal episodic memory declines prior to diagnosis in Huntington’s disease. Neuropsychologia 45(8):1767–1776. doi:10.1016/j.neuropsychologia.2006.12.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Southwell AL, Ko J, Patterson PH (2009) Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington’s disease. J Neurosci 29(43):13589–13602. doi:10.1523/JNEUROSCI.4286-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stack EC, Kubilus JK, Smith K, Cormier K, Del Signore SJ, Guelin E, Ryu H, Hersch SM, Ferrante RJ (2005) Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington’s disease transgenic mice. J Comp Neurol 490(4):354–370. doi:10.1002/cne.20680

    Article  PubMed  Google Scholar 

  • Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, Carlozzi N, Duff K, Beglinger LJ, Langbehn DR, Johnson SA, Biglan KM, Aylward EH (2011) Neurocognitive signs in prodromal Huntington disease. Neuropsychology 25(1):1–14. doi:10.1037/a0020937

    Article  PubMed  PubMed Central  Google Scholar 

  • Stout JC, Jones R, Labuschagne I, O’Regan AM, Say MJ, Dumas EM, Queller S, Justo D, Santos RD, Coleman A, Hart EP, Durr A, Leavitt BR, Roos RA, Langbehn DR, Tabrizi SJ, Frost C (2012) Evaluation of longitudinal 12 and 24 month cognitive outcomes in premanifest and early Huntington’s disease. J Neurol Neurosurg Psychiatry 83(7):687–694. doi:10.1136/jnnp-2011-301940jnnp-2011-301940

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, Jones R, Johnson H, Craufurd D, Hicks SL, Kennard C, Landwehrmeyer B, Stout JC, Borowsky B, Scahill RI, Frost C, Langbehn DR (2012) Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol 11(1):42–53. doi:10.1016/S1474-4422(11)70263-0

    Article  PubMed  Google Scholar 

  • Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, Borowsky B, Landwehrmeyer B, Frost C, Johnson H, Craufurd D, Reilmann R, Stout JC, Langbehn DR (2013) Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol 12(7):637–649. doi:10.1016/S1474-4422(13)70088-7

    Article  PubMed  Google Scholar 

  • Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14(6):685–692. doi:10.1016/j.conb.2004.10.003

    Article  CAS  PubMed  Google Scholar 

  • Thompson JC, Harris J, Sollom AC, Stopford CL, Howard E, Snowden JS, Craufurd D (2012) Longitudinal evaluation of neuropsychiatric symptoms in Huntington’s disease. J Neuropsychiatry Clin Neurosci 24(1):53–60. doi:10.1176/appi.neuropsych.11030057

    Article  PubMed  Google Scholar 

  • Turmaine M, Raza A, Mahal A, Mangiarini L, Bates GP, Davies SW (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 97(14):8093–8097. doi:10.1073/pnas.110078997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaccarino AL, Sills T, Anderson KE, Borowsky B, Craufurd D, Giuliano J, Goodman L, Guttman M, Kupchak P, Ho AK, Paulsen JS, van Kammen DP, Evans K (2011) Assessment of cognitive symptoms in prodromal and early huntington disease. PLoS Curr 3:RRN1250. doi:10.1371/currents.RRN1250

    PubMed  PubMed Central  Google Scholar 

  • Van den Stock J, De Winter FL, Ahmad R, Sunaert S, Van Laere K, Vandenberghe W, Vandenbulcke M (2015) Functional brain changes underlying irritability in premanifest Huntington’s disease. Hum Brain Mapp 36(7):2681–2690. doi:10.1002/hbm.22799

    Article  PubMed  Google Scholar 

  • van Dijk JG, van der Velde EA, Roos RA, Bruyn GW (1986) Juvenile Huntington disease. Hum Genet 73(3):235–239

    Article  PubMed  Google Scholar 

  • Vassos E, Panas M, Kladi A, Vassilopoulos D (2007) Higher levels of extroverted hostility detected in gene carriers at risk for Huntington’s disease. Biol Psychiatry 62(12):1347–1352. doi:10.1016/j.biopsych.2006.12.016

    Article  PubMed  Google Scholar 

  • Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115(1):55–69. doi:10.1007/s00401-007-0306-6

    Article  PubMed  Google Scholar 

  • Vonsattel JP, DiFiglia M (1998) Huntington disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  CAS  PubMed  Google Scholar 

  • Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577

    Article  CAS  PubMed  Google Scholar 

  • Wade A, Jacobs P, Morton AJ (2008) Atrophy and degeneration in sciatic nerve of presymptomatic mice carrying the Huntington’s disease mutation. Brain Res 1188:61–68. doi:10.1016/j.brainres.2007.06.059

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Kai L, Day M, Ronesi J, Yin HH, Ding J, Tkatch T, Lovinger DM, Surmeier DJ (2006) Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50(3):443–452. doi:10.1016/j.neuron.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  • Wang CE, Tydlacka S, Orr AL, Yang SH, Graham RK, Hayden MR, Li S, Chan AW, Li XJ (2008) Accumulation of N-terminal mutant huntingtin in mouse and monkey models implicated as a pathogenic mechanism in Huntington’s disease. Hum Mol Genet 17(17):2738–2751. doi:10.1093/hmg/ddn175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson KK, Platt ML (2012) Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 4(1):21. doi:10.1186/1866-1955-4-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Wheeler VC, White JK, Gutekunst CA, Vrbanac V, Weaver M, Li XJ, Li SH, Yi H, Vonsattel JP, Gusella JF, Hersch S, Auerbach W, Joyner AL, MacDonald ME (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in HdhQ92 and HdhQ111 knock-in mice. Hum Mol Genet 9(4):503–513

    Article  CAS  PubMed  Google Scholar 

  • Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord 29(11):1434–1445. doi:10.1002/mds.26007

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Parent A (2000) Striatal interneurons expressing calretinin, parvalbumin or NADPH-diaphorase: a comparative study in the rat, monkey and human. Brain Res 863(1–2):182–191

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Li L, Pittenger C (2016) Ablation of fast-spiking interneurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming. Neuroscience 324:321–329. doi:10.1016/j.neuroscience.2016.02.074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Cheng PH, Banta H, Piotrowska-Nitsche K, Yang JJ, Cheng EC, Snyder B, Larkin K, Liu J, Orkin J, Fang ZH, Smith Y, Bachevalier J, Zola SM, Li SH, Li XJ, Chan AW (2008) Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453(7197):921–924. doi:10.1038/nature06975nature06975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeterian EH, Van Hoesen GW (1978) Cortico-striate projections in the rhesus monkey: the organization of certain cortico-caudate connections. Brain Res 139(1):43–63

    Article  CAS  PubMed  Google Scholar 

  • Yoon G, Kramer J, Zanko A, Guzijan M, Lin S, Foster-Barber A, Boxer AL (2006) Speech and language delay are early manifestations of juvenile-onset Huntington disease. Neurology 67(7):1265–1267. doi:10.1212/01.wnl.0000238390.86304.4e

    Article  CAS  PubMed  Google Scholar 

  • Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, Sandstrom R, Ma Z, Davis C, Pope BD, Shen Y, Pervouchine DD, Djebali S, Thurman RE, Kaul R, Rynes E, Kirilusha A, Marinov GK, Williams BA, Trout D, Amrhein H, Fisher-Aylor K, Antoshechkin I, DeSalvo G, See LH, Fastuca M, Drenkow J, Zaleski C, Dobin A, Prieto P, Lagarde J, Bussotti G, Tanzer A, Denas O, Li K, Bender MA, Zhang M, Byron R, Groudine MT, McCleary D, Pham L, Ye Z, Kuan S, Edsall L, Wu YC, Rasmussen MD, Bansal MS, Kellis M, Keller CA, Morrissey CS, Mishra T, Jain D, Dogan N, Harris RS, Cayting P, Kawli T, Boyle AP, Euskirchen G, Kundaje A, Lin S, Lin Y, Jansen C, Malladi VS, Cline MS, Erickson DT, Kirkup VM, Learned K, Sloan CA, Rosenbloom KR, Lacerda de Sousa B, Beal K, Pignatelli M, Flicek P, Lian J, Kahveci T, Lee D, Kent WJ, Ramalho Santos M, Herrero J, Notredame C, Johnson A, Vong S, Lee K, Bates D, Neri F, Diegel M, Canfield T, Sabo PJ, Wilken MS, Reh TA, Giste E, Shafer A, Kutyavin T, Haugen E, Dunn D, Reynolds AP, Neph S, Humbert R, Hansen RS, De Bruijn M, Selleri L, Rudensky A, Josefowicz S, Samstein R, Eichler EE, Orkin SH, Levasseur D, Papayannopoulou T, Chang KH, Skoultchi A, Gosh S, Disteche C, Treuting P, Wang Y, Weiss MJ, Blobel GA, Cao X, Zhong S, Wang T, Good PJ, Lowdon RF, Adams LB, Zhou XQ, Pazin MJ, Feingold EA, Wold B, Taylor J, Mortazavi A, Weissman SM, Stamatoyannopoulos JA, Snyder MP, Guigo R, Gingeras TR, Gilbert DM, Hardison RC, Beer MA, Ren B (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515 (7527):355–364. doi:10.1038/nature13992

  • Zappacosta B, Monza D, Meoni C, Austoni L, Soliveri P, Gellera C, Alberti R, Mantero M, Penati G, Caraceni T, Girotti F (1996) Psychiatric symptoms do not correlate with cognitive decline, motor symptoms, or CAG repeat length in Huntington’s disease. Arch Neurol 53(6):493–497

    Article  CAS  PubMed  Google Scholar 

  • Zeidler S, Hukema RK, Willemsen R (2015) The quest for targeted therapy in fragile X syndrome. Expert Opin Ther Targets 19(10):1277–1281. doi:10.1517/14728222.2015.1079176

    Article  CAS  PubMed  Google Scholar 

  • Zizak VS, Filoteo JV, Possin KL, Lucas JA, Rilling LM, Davis JD, Peavy G, Wong A, Salmon DP (2005) The ubiquity of memory retrieval deficits in patients with frontal-striatal dysfunction. Cogn Behav Neurol 18(4):198–205

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Yerkes National Primate Research Center (YNPRC) veterinarian staff, primate enrichment team, and animal care personnel for providing superior medical and daily care to HD monkeys as disease progressed. Editorial assistance provided by Ms. Leslee Sinclair. The Transgenic Huntington’s Disease Monkey Resource (THDMR) and this study are supported by a grant awarded by the ORIP/NIH (OD010930) to AWSC. YNPRC is supported by the National Center for Research Resources P51RR165 and is currently supported by the Office of Research and Infrastructure Program (ORIP)/OD P51OD11132.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brooke R. Snyder or Anthony W. S. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, B.R., Chan, A.W.S. Progress in developing transgenic monkey model for Huntington’s disease. J Neural Transm 125, 401–417 (2018). https://doi.org/10.1007/s00702-017-1803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-017-1803-y

Keywords

Navigation