Skip to main content
Log in

Eye proprioception may provide real time eye position information

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Because of the frequency of eye movements, online knowledge of eye position is crucial for the accurate spatial perception and behavioral navigation. Both the internal monitoring signal (corollary discharge) of eye movements and the eye proprioception signal are thought to contribute to the localization of the eye position in the orbit. However, the functional role of these two eye position signals in spatial cognition has been disputed for more than a century. The predominant view proposes that the online analysis of eye position is exclusively provided by the corollary discharge signal, while the eye proprioception signal only plays a role in the long-term calibration of the oculomotor system. However, increasing evidence from recent behavioral and physiological studies suggests that the eye proprioception signal may play a role in the online monitoring of eye position. The purpose of this review is to discuss the feasibility and possible function of the eye proprioceptive signal for online monitoring of eye position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green DG (1970) Regional variations in the visual acuity for interference fringes on the retina. J Physiol 207:351–356

    PubMed  CAS  Google Scholar 

  2. Andersen RA, Mountcastle VB (1983) The Influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3:532–548

    PubMed  CAS  Google Scholar 

  3. Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403

    Article  PubMed  CAS  Google Scholar 

  4. Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  PubMed  CAS  Google Scholar 

  5. Sherrington CS (1918) Observations on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles. Brain 41:332–343

    Article  Google Scholar 

  6. Wurtz R (2008) Neuronal mechanisms of visual stability. Vision Res 48:2070–2089

    Article  PubMed  Google Scholar 

  7. Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:1480–1482

    Article  PubMed  CAS  Google Scholar 

  8. Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J Neurophysiol 91:1403–1423

    Article  PubMed  Google Scholar 

  9. Bellebaum C, Daum I, Koch B, Schwarz M, Hoffmann KP (2005) The role of the human thalamus in processing corollary discharge. Brain 128:1139–1154

    Article  PubMed  CAS  Google Scholar 

  10. Bellebaum C, Hoffmann KP, Koch B, Schwarz M, Daum I (2006) Altered processing of corollary discharge in thalamic lesion patients. Eur J Neurosci 24:2375–2388

    Article  PubMed  Google Scholar 

  11. Ostendorf F, Liebermann D, Ploner CJ (2010) Human thalamus contributes to perceptual stability across eye movements. Proc Natl Acad Sci USA 107:1229–1234

    Article  PubMed  CAS  Google Scholar 

  12. Lewis RF, Zee DS, Hayman MR, Tamargo RJ (2001) Oculomotor function in the rhesus monkey after deafferentation of the extraocular muscles. Exp Brain Res 141:349–358

    Article  PubMed  CAS  Google Scholar 

  13. Lewis RF, Gaymard BM, Tamargo RJ (1998) Efference copy provides the eye position information required for visually guided reaching. J Neurophysiol 80:1605–1608

    PubMed  CAS  Google Scholar 

  14. Ruskell G (1989) The fine structure of human extraocular muscle spindles and their potential proprioceptive capacity. J Anat 167:199–214

    PubMed  CAS  Google Scholar 

  15. Billig I, Delmas CB, Buisseret P (1997) Identification of nerve endings in cat extraocular muscles. Anat Rec 248:566–575

    Article  PubMed  CAS  Google Scholar 

  16. Fackelmann K, Nouriani A, Horn AK (2008) Histochemical characterisation of trigeminal neurons that innervate monkey extraocular muscles. Prog Brain Res 171:17–20

    Article  PubMed  CAS  Google Scholar 

  17. Wang N, May PJ (2008) Peripheral muscle targets and central projections of the mesencephalic trigeminal nucleus in macaque monkeys. Anat Rec (Hoboken) 291:974–987

    Article  Google Scholar 

  18. Manni E, Bortolami R, Desole C (1966) Eye muscle proprioception and the semilunar ganglion. Exp Neurol 16:226–236

    Article  PubMed  CAS  Google Scholar 

  19. Manni E, Bortolami R, Desole C (1968) Peripheral pathway of eye muscle proprioception. Exp Neurol 22:1–12

    Article  PubMed  CAS  Google Scholar 

  20. Eberhorn AC, Horn AK, Eberhorn N, Fischer P, Boergen KP, Buttner-Ennever JA (2005) Palisade endings in extraocular eye muscles revealed by SNAP-25 immunoreactivity. J Anat 206:307–315

    Article  PubMed  Google Scholar 

  21. Eberhorn AC, Horn AK, Fischer P, Buttner-Ennever JA (2005) Proprioception and palisade endings in extraocular eye muscles. Ann NY Acad Sci 1039:1–8

    Article  PubMed  Google Scholar 

  22. Niechwiej-Szwedo E, González E, Bega S, Verrier MC, Wong AM, Steinbach MJ (2006) Proprioceptive role for palisade endings in extraocular muscles: evidence from the Jendrassik Maneuver. Vision Res 46:2268–2279

    Article  PubMed  CAS  Google Scholar 

  23. Blumer R, Konakci KZ, Pomikal C, Wieczorek G, Lukas JR, Streicher J (2009) Palisade endings: cholinergic sensory organs or effector organs? Invest Ophthalmol Vis Sci 50:1176–1186

    Article  PubMed  Google Scholar 

  24. Konakci KZ, Streicher J, Hoetzenecker W, Blumer MJF, Lukas JR, Blumer R (2005) Molecular characteristics suggest an effector function of palisade endings in extraocular muscles. Invest Ophth Vis Sci 46:155–165

    Article  Google Scholar 

  25. Tozer FM, Sherrington CS (1910) Receptors and afferents of the third, fourth, and sixth cranial nerves. Proc R Soc Lond Ser 82:451–457

    Google Scholar 

  26. Sas J, Die sogenannten RS (1952) ‘Palisaden-Endigungen’der Augenmuskeln. Acta Morph Acad Sci Hung 2:259–266

    Google Scholar 

  27. Lienbacher K, Mustari M, Ying HS, Buttner-Ennever JA, Horn AKE (2011) Do palisade endings in extraocular muscles arise from neurons in the motor nuclei? Invest Ophth Vis Sci 52:2510–2519

    Article  Google Scholar 

  28. Buttner-Ennever JA, Horn AKE, Scherberger H, D’Ascanio P (2001) Motoneurons of twitch and nontwitch extraocular muscle fibers in the abducens, trochlear, and oculomotor nuclei of monkeys. J Comp Neurol 438:318–335

    Article  PubMed  CAS  Google Scholar 

  29. Zimmermann L, May PJ, Pastor ÁM, Streicher J, Blumer R (2011) Evidence that the extraocular motor nuclei innervate monkey palisade endings. Neurosci Lett 489:89–93

    Article  PubMed  CAS  Google Scholar 

  30. Lukas JR, Blumer R, Denk M, Baumgartner I, Neuhuber W, Mayr R (2000) Innervated myotendinous cylinders in human extraocular muscles. Invest Ophth Vis Sci 41:2422–2431

    CAS  Google Scholar 

  31. Buttner-Ennever JA, Eberhorn A, Horn AK (2003) Motor and sensory innervation of extraocular eye muscles. Ann NY Acad Sci 1004:40–49

    Article  PubMed  CAS  Google Scholar 

  32. Buttner-Ennever JA, Konakci KZ, Blumer R (2006) Sensory control of extraocular muscles. Prog Brain Res 151:81–93

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Zhang M, Cohen IS, Goldberg ME (2007) The proprioceptive representation of eye position in monkey primary somatosensory cortex. Nat Neurosci 10:640–646

    Article  PubMed  CAS  Google Scholar 

  34. Xu Y, Wang X, Peck C, Goldberg ME (2011) The time course of the tonic oculomotor proprioceptive signal in area 3a of somatosensory cortex. J Neurophysiol 106:71–77

    Article  PubMed  Google Scholar 

  35. Balslev D, Miall RC (2008) Eye position representation in human anterior parietal cortex. J Neurosci 28:8968–8972

    Article  PubMed  CAS  Google Scholar 

  36. Balslev D, Albert NB, Miall C (2011) Eye muscle proprioception is represented bilaterally in the sensorimotor cortex. Hum Brain Mapp 32:624–631

    Article  PubMed  Google Scholar 

  37. Balslev D, Himmelbach M, Karnath HO, Svenja B, Odoj B (2012) Eye proprioception used for visual localization only if in conflict with the oculomotor plan. J Neurosci 32:8569–8573

    Article  PubMed  CAS  Google Scholar 

  38. Ilg UJ, Bridgeman B, Hoffmann KP (1989) Influence of mechanical disturbance on oculomotor behavior. Vision Res 29:545–551

    Article  PubMed  CAS  Google Scholar 

  39. Bridgeman B, Stark L (1991) Ocular proprioception and efference copy in registering visual direction. Vision Res 31:1903–1913

    Article  PubMed  CAS  Google Scholar 

  40. Tong J, Stevenson SB, Bedell HE (2008) Signals of eye-muscle proprioception modulate perceived motion smear. J Vis 8(7):1–6

    Article  Google Scholar 

  41. Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31:17392–17405

    Article  PubMed  CAS  Google Scholar 

  42. Weir RC, Knox PC, Dutton GN (2000) Does extraocular muscle proprioception influence ocular control. Br J Ophthalmol 84:1071–1074

    Article  PubMed  CAS  Google Scholar 

  43. Allin F, Velay JL, Bouquerel A (1996) Shift in saccadic direction induced in humans by proprioceptive manipulation: a comparison between memory-guided and visually guided saccades. Exp Brain Res 110:473–481

    Article  PubMed  CAS  Google Scholar 

  44. Matin L, Picoult E, Stevens JK, Edwards MW Jr, Young D, MacArthur R (1982) Oculoparalytic illusion: visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198–201

    Article  PubMed  CAS  Google Scholar 

  45. Knox PC, Weir CR, Murphy PJ (2000) Modification of visually guided saccades by a nonvisual afferent feedback signal. Invest Ophthalmol Vis Sci 41:2561–2565

    PubMed  CAS  Google Scholar 

  46. Wei M, Lin N, Newlands SD (2011) Does orbital proprioception contribute to gaze stability during translation? Exp Brain Res 215:77–87

    Article  PubMed  Google Scholar 

  47. Barash S, Bracewell RM, Fogassi L, Gnadt JW, Andersen RA (1991) Saccade-related activity in the lateral intraparietal area. I. Temporal properties; comparison with area 7a. J Neurophysiol 66:1095–1108

    PubMed  CAS  Google Scholar 

  48. Hanes DP, Thompson KG, Schall JD (1995) Relationship of presaccadic activity in frontal eye field and supplementary eye field to saccade initiation in macaque: Poisson spike train analysis. Exp Brain Res 103:85–96

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka M (2007) Spatiotemporal properties of eye position signals in the primate central thalamus. Cereb Cortex 17:1504–1515

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (SKLN-2010A05 and SKLN-201203). We thank Dr. Mingsha Zhang for his critical review and discussion, and Dr. Jane C. Yaciuk and Dr. Sara Steenrod for their language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujun Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Pan, Y. Eye proprioception may provide real time eye position information. Neurol Sci 34, 281–286 (2013). https://doi.org/10.1007/s10072-012-1172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1172-0

Keywords

Navigation