Skip to main content
Log in

Congenital and Prolonged Adult-Onset Deafness Cause Distinct Degradations in Neural ITD Coding with Bilateral Cochlear Implants

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Bilateral cochlear implant (CI) users perform poorly on tasks involving interaural time differences (ITD), which are critical for sound localization and speech reception in noise by normal-hearing listeners. ITD perception with bilateral CI is influenced by age at onset of deafness and duration of deafness. We previously showed that ITD coding in the auditory midbrain is degraded in congenitally deaf white cats (DWC) compared to acutely deafened cats (ADC) with normal auditory development (Hancock et al., J. Neurosci, 30:14068). To determine the relative importance of early onset of deafness and prolonged duration of deafness for abnormal ITD coding in DWC, we recorded from single units in the inferior colliculus of cats deafened as adults 6 months prior to experimentation (long-term deafened cats, LTDC) and compared neural ITD coding between the three deafness models. The incidence of ITD-sensitive neurons was similar in both groups with normal auditory development (LTDC and ADC), but significantly diminished in DWC. In contrast, both groups that experienced prolonged deafness (LTDC and DWC) had broad distributions of best ITDs around the midline, unlike the more focused distributions biased toward contralateral-leading ITDs present in both ADC and normal-hearing animals. The lack of contralateral bias in LTDC and DWC results in reduced sensitivity to changes in ITD within the natural range. The finding that early onset of deafness more severely degrades neural ITD coding than prolonged duration of deafness argues for the importance of fitting deaf children with sound processors that provide reliable ITD cues at an early age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  • Aronoff JM, Yoon YS, Freed DJ, Vermiglio AJ, Pal I, Soli SD (2010) The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am 127:EL87–EL92

    Article  PubMed  Google Scholar 

  • Batra R, Yin TC (2004) Cross correlation by neurons of the medial superior olive: a reexamination. J Assoc Res Otolaryngol 5:238–252

    Article  PubMed  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. II. Coincidence detection. J Neurophysiol 78:1237–1247

    PubMed  CAS  Google Scholar 

  • Bergan JF, Ro P, Ro D, Knudsen EI (2005) Hunting increases adaptive auditory map plasticity in adult barn owls. J Neurosci 25:9816–9820

    Article  PubMed  CAS  Google Scholar 

  • Brainard MS, Knudsen EI (1993) Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl. J Neurosci 13:4589–4608

    PubMed  CAS  Google Scholar 

  • Brainard MS, Knudsen EI (1998) Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J Neurosci 18:3929–3942

    PubMed  CAS  Google Scholar 

  • Bronkhorst AW, Plomp R (1992) Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J Acoust Soc Am 92:3132–3139

    Article  PubMed  CAS  Google Scholar 

  • Chung Y, Hancock KE, Nam S, Delgutte B (2013) Better temporal neural coding with cochlear implants in awake animals. In: Basic aspects of hearing (Moore BCJ, Carlyon RP, Gockel HE, Patterson RD, Winter IM, eds): Springer

  • Devore S, Ihlefeld A, Hancock K, Shinn-Cunningham B, Delgutte B (2009) Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain. Neuron 62:123–134

    Article  PubMed  CAS  Google Scholar 

  • Ehret G, Merzenich MM (1988) Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res 472:139–163

    PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (2000a) A site of auditory experience-dependent plasticity in the neural representation of auditory space in the barn owl's inferior colliculus. J Neurosci 20:3469–3486

    PubMed  CAS  Google Scholar 

  • Gold JI, Knudsen EI (2000b) Abnormal auditory experience induces frequency-specific adjustments in unit tuning for binaural localization cues in the optic tectum of juvenile owls. J Neurosci 20:862–877

    PubMed  CAS  Google Scholar 

  • Hancock KE, Delgutte B (2004) A physiologically based model of interaural time difference discrimination. J Neurosci 24:7110–7117

    Article  PubMed  CAS  Google Scholar 

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079

    Article  PubMed  CAS  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728

    Article  PubMed  Google Scholar 

  • Hardie NA (1998) The consequences of deafness and chronic intracochlear electrical stimulation on the central auditory pathways. Clin Exp Pharmacol Physiol 25:303–309

    Article  PubMed  CAS  Google Scholar 

  • Heffer LF, Fallon JB (2008) A novel stimulus artifact removal technique for high-rate electrical stimulation. J Neurosci Methods 170:277–284

    Article  PubMed  Google Scholar 

  • Heid S, Hartmann R, Klinke R (1998) A model for prelingual deafness, the congenitally deaf white cat—population statistics and degenerative changes. Hear Res 115:101–112

    Article  PubMed  CAS  Google Scholar 

  • Joris PX, Yin TC (1998) Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. J Neurophysiol 79:253–269

    PubMed  CAS  Google Scholar 

  • Joris PX, Van de Sande B, Louage DH, van der Heijden M (2006) Binaural and cochlear disparities. Proc Natl Acad Sci U S A 103:12917–12922

    Article  PubMed  CAS  Google Scholar 

  • Kacelnik O, Nodal FR, Parsons CH, King AJ (2006) Training-induced plasticity of auditory localization in adult mammals. PLoS Biol 4:e71

    Article  PubMed  Google Scholar 

  • Kapfer C, Seidl AH, Schweizer H, Grothe B (2002) Experience-dependent refinement of inhibitory inputs to auditory coincidence-detector neurons. Nat Neurosci 5:247–253

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87

    Article  PubMed  CAS  Google Scholar 

  • Kral A, Eggermont JJ (2007) What's to lose and what's to learn: development under auditory deprivation, cochlear implants and limits of cortical plasticity. Brain Res Rev 56:259–269

    Article  PubMed  Google Scholar 

  • Kral A, Sharma A (2012) Developmental neuroplasticity after cochlear implantation. Trends Neurosci 35:111–122

    Article  PubMed  CAS  Google Scholar 

  • Kral A, Schroder JH, Klinke R, Engel AK (2003) Absence of cross-modal reorganization in the primary auditory cortex of congenitally deaf cats. Exp Brain Res 153:605–613

    Article  PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TC (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999

    PubMed  CAS  Google Scholar 

  • Kuwada S, Yin TC, Syka J, Buunen TJ, Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J Neurophysiol 51:1306–1325

    PubMed  CAS  Google Scholar 

  • Kuwada S, Stanford TR, Batra R (1987) Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. J Neurophysiol 57:1338–1360

    PubMed  CAS  Google Scholar 

  • Kuwada S, Batra R, Stanford TR (1989) Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: effects of sodium pentobarbital. J Neurophysiol 61:269–282

    PubMed  CAS  Google Scholar 

  • Laback B, Majdak P, Baumgartner WD (2007) Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing. J Acoust Soc Am 121:2182–2191

    Article  PubMed  Google Scholar 

  • Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–33

    Article  PubMed  CAS  Google Scholar 

  • Lee DJ, Cahill HB, Ryugo DK (2003) Effects of congenital deafness in the cochlear nuclei of shaker-2 mice: an ultrastructural analysis of synapse morphology in the endbulbs of Held. J Neurocytol 32:229–243

    Article  PubMed  Google Scholar 

  • Litovsky R, Parkinson A, Arcaroli J, Sammeth C (2006) Simultaneous bilateral cochlear implantation in adults: a multicenter clinical study. Ear Hear 27:714–731

    Article  PubMed  Google Scholar 

  • Litovsky RY, Jones GL, Agrawal S, van Hoesel R (2010) Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. J Acoust Soc Am 127:400–414

    Article  PubMed  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379

    Article  PubMed  CAS  Google Scholar 

  • Ma WL, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21

    Article  PubMed  Google Scholar 

  • Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111:2219–2236

    Article  PubMed  Google Scholar 

  • Manzoor NF, Licari FG, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA (2012) Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol 108:976–988

    Article  PubMed  CAS  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Snyder RL (2010) Selective electrical stimulation of the auditory nerve activates a pathway specialized for high temporal acuity. J Neurosci 30:1937–1946

    Article  PubMed  CAS  Google Scholar 

  • Mulders WH, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164:733–746

    Article  PubMed  CAS  Google Scholar 

  • O'Neil JN, Limb CJ, Baker CA, Ryugo DK (2010) Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. J Comp Neurol 518:2382–2404

    Article  PubMed  Google Scholar 

  • Poon BB, Eddington DK, Noel V, Colburn HS (2009) Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. J Acoust Soc Am 126:806–815

    Article  PubMed  Google Scholar 

  • Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK (1997) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of Held. J Comp Neurol 385:230–244

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Rosenbaum BT, Kim PJ, Niparko JK, Saada AA (1998) Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus. J Comp Neurol 397:532–548

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Cahill HB, Rose LS, Rosenbaum BT, Schroeder ME, Wright AL (2003) Separate forms of pathology in the cochlea of congenitally deaf white cats. Hear Res 181:73–84

    Article  PubMed  Google Scholar 

  • Ryugo DK, Baker CA, Montey KL, Chang LY, Coco A, Fallon JB, Shepherd RK (2010) Synaptic plasticity after chemical deafening and electrical stimulation of the auditory nerve in cats. J Comp Neurol 518:1046–1063

    Article  PubMed  CAS  Google Scholar 

  • Salloum CA, Valero J, Wong DD, Papsin BC, van Hoesel R, Gordon KA (2010) Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants. Ear Hear 31:441–456

    Article  PubMed  Google Scholar 

  • Sanes DH, Bao S (2009) Tuning up the developing auditory CNS. Curr Opin Neurobiol 19:188–199

    Article  PubMed  CAS  Google Scholar 

  • Schleich P, Nopp P, D'Haese P (2004) Head shadow, squelch, and summation effects in bilateral users of the MED-EL COMBI 40/40+ cochlear implant. Ear Hear 25:197–204

    Article  PubMed  CAS  Google Scholar 

  • Scott PP (1970) Cats. In: Hafez ESE (ed) Reproduction and breeding techniques for laboratory animals. Lea and Febiger, Philadelphia

    Google Scholar 

  • Seeber BU, Fastl H (2008) Localization cues with bilateral cochlear implants. J Acoust Soc Am 123:1030–1042

    Article  PubMed  Google Scholar 

  • Seidl AH, Grothe B (2005) Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience. J Neurophysiol 94:1028–1036

    Article  PubMed  Google Scholar 

  • Sharma A, Dorman MF (2006) Central auditory development in children with cochlear implants: clinical implications. Adv Otorhinolaryngol 64:66–88

    PubMed  Google Scholar 

  • Shepherd RK, Baxi JH, Hardie NA (1999) Response of inferior colliculus neurons to electrical stimulation of the auditory nerve in neonatally deafened cats. J Neurophysiol 82:1363–1380

    PubMed  CAS  Google Scholar 

  • Siveke I, Leibold C, Schiller E, Grothe B (2012) Adaptation of binaural processing in the adult brainstem induced by ambient noise. J Neurosci 32:462–473

    Article  PubMed  CAS  Google Scholar 

  • Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750

    Article  PubMed  CAS  Google Scholar 

  • Snyder R, Leake P, Rebscher S, Beitel R (1995) Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation. J Neurophysiol 73:449–467

    PubMed  CAS  Google Scholar 

  • Stecker GC, Harrington IA, Middlebrooks JC (2005) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3:e78

    Article  PubMed  Google Scholar 

  • Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2009) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex:bhp222

  • Tirko NN, Ryugo DK (2012) Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. J Comp Neurol 520:2202–2217

    Article  PubMed  Google Scholar 

  • van Bergeijk W (1962) Variation on a theme of von Békésy: a model of binaural interaction. J Acoust Soc Am 34:1431–1437

    Article  Google Scholar 

  • van Hoesel RJ (2004) Exploring the benefits of bilateral cochlear implants. Audiol Neurootol 9:234–246

    Article  PubMed  Google Scholar 

  • van Hoesel RJ (2012) Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 288:100–113

    Article  PubMed  Google Scholar 

  • van Hoesel RJ, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630

    Article  PubMed  Google Scholar 

  • Vollmer M, Beitel RE (2011) Behavioral training restores temporal processing in auditory cortex of long-deaf cats. J Neurophysiol 106:2423–2436

    Article  PubMed  Google Scholar 

  • Vollmer M, Snyder RL, Leake PA, Beitel RE, Moore CM, Rebscher SJ (1999) Temporal properties of chronic cochlear electrical stimulation determine temporal resolution of neurons in cat inferior colliculus. J Neurophysiol 82:2883–2902

    PubMed  CAS  Google Scholar 

  • Vollmer M, Leake PA, Beitel RE, Rebscher SJ, Snyder RL (2005) Degradation of temporal resolution in the auditory midbrain after prolonged deafness is reversed by electrical stimulation of the cochlea. J Neurophysiol 93:3339–3355

    Article  PubMed  Google Scholar 

  • Vollmer M, Pecka M, Grothe B (2009) Processing of interaural time differences in the Mongolian gerbil (Meriones unguiculatus)—a comparison between acoustical and electrical stimulation. Assoc Res Otolaryn Abstracts 32:161

    Google Scholar 

  • Xu SA, Shepherd RK, Chen Y, Clark GM (1993) Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear Res 70:205–215

    Article  PubMed  CAS  Google Scholar 

  • Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    PubMed  CAS  Google Scholar 

  • Zurek PM (1992) Binaural advantages and directional effects in speech intelligibility. In: Studebaker GA, Hochberg I (eds) Acoustical factors affecting hearing aid performance. Allyn and Bacon, Boston

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. David Ryugo for providing deaf white cats from his colony and to Connie Miller for the expert surgical assistance. We would also like to thank Evan Foss and Ishmael Stefanov-Wagner for development of custom current sources, based on a design generously shared by Chris van den Honert. This work was supported by NIDCD Grants R01 DC005775 and P30 DC005209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Hancock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hancock, K.E., Chung, Y. & Delgutte, B. Congenital and Prolonged Adult-Onset Deafness Cause Distinct Degradations in Neural ITD Coding with Bilateral Cochlear Implants. JARO 14, 393–411 (2013). https://doi.org/10.1007/s10162-013-0380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0380-5

Keywords

Navigation