Skip to main content
Log in

Relearning Auditory Spectral Cues for Locations Inside and Outside the Visual Field

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Previous research has demonstrated that, over a period of weeks, the auditory system accommodates to changes in the monaural spectral cues for sound locations within the frontal region of space. We were interested to determine if similar accommodation could occur for locations in the posterior regions of space, i.e. in the absence of contemporaneous visual information that indicates any mismatch between the perceived and actual location of a sound source. To distort the normal spectral cues to sound location, eight listeners wore small moulds in each ear. HRTF recordings confirmed that while the moulds substantially altered the monaural spectral cues, sufficient residual cues were retained to provide a basis for relearning. Compared to control measures, sound localization performance initially decreased significantly, with a sevenfold increase in front–back confusions and elevation errors more than doubled. Subjects wore the moulds continuously for a period of up to 60 days (median 38 days), over which time performance improved but remained significantly poorer than control levels. Sound localization performance for frontal locations (audio-visual field) was compared with that for posterior space (audio-only field), and there was no significant difference between regions in either the extent or rate of accommodation. This suggests a common mechanism for both regions of space that does not rely on contemporaneous visual information as a teacher signal for recalibration of the auditory system to modified spectral cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  • Alais D, Burr D (2004) The ventriloquist effect results from near-optimal bimodal integration. Curr Biol 14:257–262

    Article  CAS  PubMed  Google Scholar 

  • Aytekin M, Moss CE, Simon JZ (2008) A sensorimotor approach to sound localization. Neural Comput 20:603–635

    Article  PubMed  Google Scholar 

  • Bergan JF, Ro P, Ro D, Knudsen EI (2005) Hunting increases adaptive auditory map plasticity in adult barn owls. J Neurosci 25:9816–9820

    Article  CAS  PubMed  Google Scholar 

  • Bernard M, Pirim P, de Cheveigne A, Gas B, IEEE (2012) Sensorimotor learning of sound localization from an auditory evoked behavior. Ieee, New York

    Google Scholar 

  • Bizley JK, King AJ (2008) Visual-auditory spatial processing in auditory cortical neurons. Brain Res 1242:24–36

    Article  CAS  PubMed  Google Scholar 

  • Bizley JK, King AJ (2009) Visual influences on ferret auditory cortex. Hear Res 258:55–63

    Article  PubMed Central  PubMed  Google Scholar 

  • Brainard MS, Knudsen EI (1998) Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J Neurosci 18:3929–3942

    CAS  PubMed  Google Scholar 

  • Campenhausen M, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl’s ears. J Comp Physiol A 192:1073–1082

    Article  Google Scholar 

  • Carlile S, King AJ (1994) Monaural and binaural spectrum level cues in the ferret: acoustics and the neural representation of auditory space. J Neurophys 71:785–801

    CAS  Google Scholar 

  • Carlile S, Pralong D (1994) The location-dependent nature of perceptually salient features of the human head-related transfer function. J Acoust Soc Am 95:3445–3459

    Article  Google Scholar 

  • Carlile S, Leong P, Hyams S (1997) The nature and distribution of errors in the localization of sounds by humans. Hear Res 114:179–196

    Article  CAS  PubMed  Google Scholar 

  • Carlile S, Jin C, Raad Vv (2000) Continuous Virtual Auditory Space Using HRTF Interpolation: Acoustic and psychophysical errors. In: Int Symp on Multimedia Info processing, pp 220–223. Sydney, Australia

  • Carlile S, Martin R, McAnnaly K (2005) Spectral information in sound localisation. In: Auditory spectral processing (Irvine DRF, Malmierrca M, eds), pp 399–434

  • Clifton RK, Clarkson MG, Gwiazda J, Bauer JA, Held RM (1988) Growth in head size during infancy—implications for sound localisation. Dev Psychol 24:477–483

    Article  Google Scholar 

  • Glasberg BR, Moore BC (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138

    Article  CAS  PubMed  Google Scholar 

  • Hochberg A, Tamhane AC (1987) Multiple Comparison Procedures. Wiley, New York

    Book  Google Scholar 

  • Hofman PM, Riswick JGAV, Opstal AJV (1998) Relearning sound localization with new ears. Nat Neurosci 1:417–421

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Corderoy A, Carlile S, Schaik A (2004) Contrasting monaural and interaural spectral cues for human sound localisation. J Acoust Soc Am 115:3124–3141

    Article  PubMed  Google Scholar 

  • Kacelnik O, Nodal FR, Parsons CH, King AJ (2006) Training-induced plasticity of auditory localization in adult mammals. PLoS Biol 4:e71

    Article  PubMed Central  PubMed  Google Scholar 

  • King AJ (2004) The superior colliculus. Curr Biol 14:R335–R338

    Article  CAS  PubMed  Google Scholar 

  • King AJ (2009) Visual influences on auditory spatial learning. Phil Trans R Soc B Biol Sci 364:331–339

    Article  Google Scholar 

  • King AJ, Carlile S (1993) Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture. Exp Brain Res 94:444–455

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Walker KMM (2012) Integrating information from different senses in the auditory cortex. Biol Cybern 106:617–625

    Article  PubMed  Google Scholar 

  • King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332:73–75

    Article  CAS  PubMed  Google Scholar 

  • Kistler DJ, Wightman FL (1992) A model of head-related transfer functions based on principal components analysis and minimum-phase reconstruction. J Acoust Soc Am 91:1637–1647

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253:85–87

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1989) Vision calibrates sound localization in developing barn owls. J Neurosci 9:3306–3313

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization. J Neurosci 10:222–232

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Esterly SD, Olsen JF (1994) Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification. J Neurophysiol 71:79–94

    CAS  PubMed  Google Scholar 

  • Kumpik DP, Kacelnik O, King AJ (2010) Adaptive reweighting of auditory localization cues in response to chronic unilateral earplugging in humans. J Neurosci 30:4883–4894

    Article  CAS  PubMed  Google Scholar 

  • Leong PHW, Carlile S (1998) Methods for spherical data analysis and visualisation. J Neurosci Methods 80:191–200

    Article  CAS  PubMed  Google Scholar 

  • Linkenhoker BA, Knudsen EI (2002) Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419:293–296

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92:2607–2624

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Green DM (1992) Observations on a principal components analysis of head-related transfer functions. J Acoust Soc Am 92:597–599

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108

    Article  CAS  PubMed  Google Scholar 

  • Oldfield SR, Parker SPA (1984) Acuity of sound localization: a topography of auditory space II: pinna cues absent. Perception 13:601–617

    Article  CAS  PubMed  Google Scholar 

  • Otte RJ, Agterberg MJH, Van Wanrooij MM, Snik AFM, Van Opstal AJ (2013) Age-related hearing loss and ear morphology affect vertical but not horizontal sound-localization performance. J Assoc Res Otolaryngol 14:261–273

    Article  PubMed  Google Scholar 

  • Parseihian G, Katz BFG (2012) Rapid head-related transfer function adaptation using a virtual auditory environment. J Acoust Soc Am 131:2948–2957

    Article  PubMed  Google Scholar 

  • Pick H, Warren D, Hay J (1969) Sensory conflict in judgments of spatial direction. Percept Psychophys 6:203–205

    Article  Google Scholar 

  • Radeau M, Bertelson P (1974) The after-effects of ventriloquism. Q J Exp Psychol 26:63–71

    Article  CAS  PubMed  Google Scholar 

  • Recanzone GH (1998) Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc Natl Acad Sci U S A 95:869–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Recanzone GH (2009) Interactions of auditory and visual stimuli in space and time. Hear Res 258:89–99

    Article  PubMed Central  PubMed  Google Scholar 

  • Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ (1999) Improved auditory spatial tuning in blind humans. Nature 400:162–166

    Article  CAS  PubMed  Google Scholar 

  • Schroeder CE, Foxe J (2005) Multisensory contributions to low-level, ‘unisensory’ processing. Curr Opin Neurobiol 15:454–458

    Article  CAS  PubMed  Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Springer, Berlin, pp 455–490

    Google Scholar 

  • Van Wanrooij MM, Van Opstal AJ (2005) Relearning sound localization with a new ear. J Neurosci 25:5413–5424

    Article  PubMed  Google Scholar 

  • Van Wanrooij MM, Van Opstal AJ (2007) Sound localization under perturbed binaural hearing. J Neurophysiol 97:715–726

    Article  PubMed  Google Scholar 

  • Wahba G (1981) Spline interpolation and smoothing on a sphere. AIAM J Sci Stat Comput 2:5–16

    Article  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of free field listening. I: stimulus synthesis. J Acoust Soc Am 85:858–867

    Article  CAS  PubMed  Google Scholar 

  • Woods TM, Recanzone GH (2004) Visually induced plasticity of auditory spatial perception in Macaques. Curr Biol 14:1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Wozny DR, Shams L (2011) Recalibration of auditory space following milliseconds of cross-modal discrepancy. J Neurosci 31:4607–4612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wright BA, Zhang YX (2006) A review of learning with normal and altered sound-localization cues in human adults. Int J Audiol 45:S92–S98

    Article  PubMed  Google Scholar 

  • Zahorik P, Bangayan P, Sundareswaran V, Wang K, Tam C (2006) Perceptual recalibration in human sound localization: learning to remediate front-back reversals. J Acoust Soc Am 120:343–359

    Article  PubMed  Google Scholar 

  • Zwiers MP, Van Opstal AJ, Paige GD (2003) Plasticity in human sound localization induced by compressed spatial vision. Nat Neurosci 6:175–181

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Carlile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlile, S., Blackman, T. Relearning Auditory Spectral Cues for Locations Inside and Outside the Visual Field. JARO 15, 249–263 (2014). https://doi.org/10.1007/s10162-013-0429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0429-5

Keywords

Navigation