Skip to main content

Advertisement

Log in

Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Listeners with normal audiometric thresholds can still have suprathreshold deficits, for example, in the ability to discriminate sounds in complex acoustic scenes. One likely source of these deficits is cochlear neuropathy, a loss of auditory nerve (AN) fibers without hair cell damage, which can occur due to both aging and moderate acoustic overexposure. Since neuropathy can affect up to 50 % of AN fibers, its impact on suprathreshold hearing is likely profound, but progress is hindered by lack of a robust non-invasive test of neuropathy in humans. Reduction of suprathreshold auditory brainstem responses (ABRs) can be used to quantify neuropathy in inbred mice. However, ABR amplitudes are highly variable in humans, and thus more challenging to use. Since noise-induced neuropathy is selective for AN fibers with high thresholds, and because phase locking to temporal envelopes is particularly strong in these fibers, the envelope following response (EFR) might be a more robust measure. We compared EFRs to sinusoidally amplitude-modulated tones and ABRs to tone-pips in mice following a neuropathic noise exposure. EFR amplitude, EFR phase-locking value, and ABR amplitude were all reduced in noise-exposed mice. However, the changes in EFRs were more robust: the variance was smaller, thus inter-group differences were clearer. Optimum detection of neuropathy was achieved with high modulation frequencies and moderate levels. Analysis of group delays was used to confirm that the AN population was dominating the responses at these high modulation frequencies. Application of these principles in clinical testing can improve the differential diagnosis of sensorineural hearing loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Anderson S, White-Schwoch T, Choi HJ, Kraus N (2013) Training changes processing of speech cues in older adults with hearing loss. Front Syst Neurosci 7:97

    Article  PubMed Central  PubMed  Google Scholar 

  • Azarias G, Kruusmägi M, Connor S, Akkuratov EE, Liu X-L, Lyons D, Brismar H, Broberger C, Aperia A (2013) A specific and essential role for Na, K-ATPase α3 in neurons co-expressing α1 and α3. J Biol Chem 288:2734–2743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Bharadwaj HM, Masud S, Mehraei G, Verhulst S, Shinn-Cunningham BG (2015) Individual differences reveal correlates of hidden hearing deficits. J Neurosci 35:2161–2172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel J-L, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Campbell F, Atkinson J, Francis M, Green D (1977) Estimation of auditory thresholds using evoked potentials. Clin Screen Test Progr Clin Neurophysiol 2:68–78

    Google Scholar 

  • Cooper NP, Robertson D, Yates GK (1993) Cochlear nerve fiber responses to amplitude-modulated stimuli: variations with spontaneous rate and other response characteristics. J Neurophysiol 70:370–386

    CAS  PubMed  Google Scholar 

  • D’haenens W, Dhooge I, Maes L, Bockstael A, Keppler H, Philips B, Swinnen F, Vinck BM (2009) The clinical value of the multiple-frequency 80-Hz auditory steady-state response in adults with normal hearing and hearing loss. Arch Otolaryngol Neck Surg 135:496–506

    Article  Google Scholar 

  • Dimitrijevic A, John MS, Picton TW (2004) Auditory steady-state responses and word recognition scores in normal-hearing and hearing-impaired adults. Ear Hear 25:68–84

    Article  PubMed  Google Scholar 

  • Dobie RA, Wilson MJ (1989) Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear 10:2–13

    Article  CAS  PubMed  Google Scholar 

  • Durrant JD, Wang J, Ding DL, Salvi RJ (1998) Are inner or outer hair cells the source of summating potentials recorded from the round window? J Acoust Soc Am 104:370–377

    Article  CAS  PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

    Article  CAS  PubMed  Google Scholar 

  • Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586

    Article  PubMed Central  PubMed  Google Scholar 

  • Gorga MP, Kaminski JR, Beauchaine KA, Jesteadt W (1988) Auditory brainstem responses to tone bursts in normally hearing subjects. J Speech Hear Res 31:87–97

    Article  CAS  PubMed  Google Scholar 

  • Greenwood DD, Joris PX (1996) Mechanical and “temporal” filtering as codeterminants of the response by cat primary fibers to amplitude‐modulated signals. J Acoust Soc Am 99:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed Central  PubMed  Google Scholar 

  • Hafidi A, Beurg M, Dulon D (2005) Localization and developmental expression of BK channels in mammalian cochlear hair cells. Neuroscience 130:475–484

    Article  CAS  PubMed  Google Scholar 

  • Hall JW (2006) New handbook for auditory evoked responses, 1st edn. Pearson, Boston

    Google Scholar 

  • Hentschke H, Stüttgen MC (2011) Computation of measures of effect size for neuroscience data sets. Eur J Neurosci 34:1887–1894

    Article  PubMed  Google Scholar 

  • Herdman AT, Lins O, Roon PV, Stapells DR, Scherg M, Picton TW (2002) Intracerebral sources of human auditory steady-state responses. Brain Topogr 15:69–86

    Article  PubMed  Google Scholar 

  • Johnson TA, Brown CJ (2005) Threshold prediction using the auditory steady-state response and the tone burst auditory brain stem response: a within-subject comparison. Ear Hear 26:559–576

    Article  PubMed  Google Scholar 

  • Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  CAS  PubMed  Google Scholar 

  • Khimich D, Nouvian R, Pujol R, Tom Dieck S, Egner A, Gundelfinger ED, Moser T (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894

    Article  CAS  PubMed  Google Scholar 

  • Kidd RC, Weiss TF (1990) Mechanisms that degrade timing information in the cochlea. Hear Res 49:181–207

    Article  CAS  PubMed  Google Scholar 

  • Kiren T, Aoyagi M, Furuse H, Koike Y (1994) An experimental study on the generator of amplitude-modulation following response. Acta Oto-Laryngol Suppl 511:28–33

    CAS  Google Scholar 

  • Kujawa SG, Liberman MC (2006) Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci 26:2115–2123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuwada S, Batra R, Maher VL (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear Res 21:179–192

    Article  CAS  PubMed  Google Scholar 

  • Kuwada S, Anderson JS, Batra R, Fitzpatrick DC, Teissier N, D’Angelo WR (2002) Sources of the scalp-recorded amplitude modulation following response. J Am Acad Audiol 13:188

    PubMed  Google Scholar 

  • Lang H, Li M, Kilpatrick LA, Zhu J, Samuvel DJ, Krug EL, Goddard JC (2011) Sox2 Up-regulation and glial cell proliferation following degeneration of spiral ganglion neurons in the adult mouse inner Ear. J Assoc Res Otolaryngol 12:151–171

    Article  PubMed Central  PubMed  Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Furman A, Kujawa S, Liberman M (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    Article  CAS  PubMed  Google Scholar 

  • Maison SF, Pyott SJ, Meredith AL, Liberman MC (2013a) Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea. J Neurophysiol 109:1525–1534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maison SF, Usubuchi H, Liberman MC (2013b) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makary C, Shin J, Kujawa S, Liberman M, Merchant S (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    CAS  PubMed  Google Scholar 

  • Melcher JR, Kiang NYS (1996) Generators of the brainstem auditory evoked potential in cat III: identified cell populations. Hear Res 93:52–71

    Article  CAS  PubMed  Google Scholar 

  • Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2 + −activated K+ channel. J Biol Chem 279:36746–36752

    Article  CAS  PubMed  Google Scholar 

  • Müller M, von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place–frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  • Nikiforidis GC, Koutsojannis CM, Varakis JN, Goumas PD (1993) Reduced variance in the latency and amplitude of the fifth wave of auditory brain stem response after normalization for head size. Ear Hear 14:423–428

    Article  CAS  PubMed  Google Scholar 

  • Obrien WJ, Lingrel JB, Wallick ET (1994) Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch Biochem Biophys 310:32–39

    Article  CAS  Google Scholar 

  • Oliver D, Taberner AM, Thurm H, Sausbier M, Arntz C, Ruth P, Fakler B, Liberman MC (2006) The role of BKCa channels in electrical signal encoding in the mammalian auditory periphery. J Neurosci 26:6181–6189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parthasarathy A, Bartlett E (2012) Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing. Hear Res 289:52–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Parthasarathy A, Datta J, Torres JAL, Hopkins C, Bartlett EL (2014) Age-related changes in the relationship between auditory brainstem responses and envelope-following responses. J Assoc Res Otolaryngol 15:649–661

    Article  PubMed Central  PubMed  Google Scholar 

  • Pauli-Magnus D, Hoch G, Strenzke N, Anderson S, Jentsch TJ, Moser T (2007) Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses. Neuroscience 149:673–684

    Article  CAS  PubMed  Google Scholar 

  • Pethe J, Von Specht H, Mühler R, Hocke T (2001) Amplitude modulation following responses in awake and sleeping humans—a comparison for 40 Hz and 80 Hz modulation frequency. Scand Audiol Suppl 152–155

  • Ping J, Li N, Du Y, Wu X, Li L, Galbraith G (2007) Auditory evoked responses in the rat: transverse mastoid needle electrodes register before cochlear nucleus and do not reflect later inferior colliculus activity. J Neurosci Methods 161:11–16

    Article  PubMed  Google Scholar 

  • Plack CJ, Barker D, Prendergast G (2014) Perceptual consequences of “hidden” hearing loss. Trends Hear 18

  • Pyott SJ, Meredith AL, Fodor AA, Vázquez AE, Yamoah EN, Aldrich RW (2007) Cochlear function in mice lacking the BK channel α, β1, or β4 subunits. J Biol Chem 282:3312–3324

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18:159–168

    Article  CAS  PubMed  Google Scholar 

  • Rickards FW, Clark GM (1972) Field potentials in cat auditory nuclei in response to frequency and amplitude modulated sound. Proc Aust Physiol Pharmacol Soc p 201

  • Robertson D, Bester C, Vogler D, Mulders WHAM (2013) Spontaneous hyperactivity in the auditory midbrain: relationship to afferent input. Hear Res 295:124–129

    Article  PubMed  Google Scholar 

  • Ruggles D, Bharadwaj H, Shinn-Cunningham BG (2011) Normal hearing is not enough to guarantee robust encoding of suprathreshold features important in everyday communication. Proc Natl Acad Sci U S A 108:15516–15521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sausbier U, Sausbier M, Sailer CA, Arntz C, Knaus H-G, Neuhuber W, Ruth P (2006) Ca2 + −activated K+ channels of the BK-type in the mouse brain. Histochem Cell Biol 125:725–741

    Article  CAS  PubMed  Google Scholar 

  • Schaette R (2014) Tinnitus in men, mice (as well as other rodents), and machines. Hear Res 311:63–71

    Article  PubMed  Google Scholar 

  • Schmiedt RA, Okamura H-O, Lang H, Schulte BA (2002) Ouabain application to the round window of the gerbil cochlea: a model of auditory neuropathy and apoptosis. J Assoc Res Otolaryngol 3:223–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwaber MK, Hall JW (1990) A simplified technique for transtympanic electrocochleography. Am J Otol 11:260–265

    CAS  PubMed  Google Scholar 

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shera CA, Bergevin C (2012) Obtaining reliable phase-gradient delays from otoacoustic emission data. J Acoust Soc Am 132:927–943

    Article  PubMed Central  PubMed  Google Scholar 

  • Skinner LJ, Enée V, Beurg M, Jung HH, Ryan AF, Hafidi A, Aran J-M, Dulon D (2003) Contribution of BK Ca2 + −activated K+ channels to auditory neurotransmission in the guinea Pig cochlea. J Neurophysiol 90:320–332

    Article  CAS  PubMed  Google Scholar 

  • Stamataki S, Francis HW, Lehar M, May BJ, Ryugo DK (2006) Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hear Res 221:104–118

    Article  PubMed  Google Scholar 

  • Stapells DR, Makeig S, Galambos R (1987) Auditory steady-state responses: threshold prediction using phase coherence. Electroencephalogr Clin Neurophysiol 67:260–270

    Article  CAS  PubMed  Google Scholar 

  • Strait DL, Kraus N (2014) Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 308:109–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Taberner AM (2005) Using knockout mice to study the molecular mechanisms that shape auditory nerve responses. Dissertation, Massachusetts Institute of Technology

  • Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  • Tsuzuku T (1993) 40-Hz steady state response in awake cats after bilateral chronic lesions in auditory cortices or inferior Colliculi. Auris Nasus Larynx 20:263–274

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Shi F, Yin Y, Tong M, Lang H, Polley DB, Liberman MC, Edge ASB (2014) Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol 15:31–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu L, Bharadwaj H, Xia J, Shinn-Cunningham B (2013) A comparison of spectral magnitude and phase-locking value analyses of the frequency-following response to complex tones. J Acoust Soc Am 134:384–395

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Leslie Liberman for expert assistance in cochlear immunostaining, and Yanbo Yin and Mingjie Tong for their assistance in the ouabain experiment. We thank Andrea Meredith for providing the BK knockout mice. Research supported by grants from the National Institute on Deafness and other Communicative Disorders: R01 DC 00188 (MCL), P30 DC 05209 (MCL) and T32 DC 00038 (LAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke A. Shaheen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, L.A., Valero, M.D. & Liberman, M.C. Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses. JARO 16, 727–745 (2015). https://doi.org/10.1007/s10162-015-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0539-3

Keywords

Navigation