Skip to main content
Log in

Microfluidics for Mammalian Cell Chemotaxis

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The emerging field of micro-technology has opened up new possibilities for exploring cellular chemotaxis in real space and time, and at single cell resolution. Chemotactic cells sense and move in response to chemical gradients and play important roles in a number of physiological and pathological processes, including development, immune responses, and tumor cell invasions. Due to the size proximity of the microfluidic device to cells, microfluidic chemotaxis devices advance the traditional macro-scale chemotaxis assays in two major directions: one is to build well defined and stable chemical gradients at cellular length scales, and the other is to provide a platform for quantifying cellular responses at both cellular and molecular levels using advanced optical imaging systems. Here, we present a critical review on the designing principles, recent development, and potential capabilities of the microfluidic chemotaxis assay for solving problems that are of importance in the biomedical engineering field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Abhyankar, V. V., et al. Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab Chip 6(3):389–393, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Abhyankar, V. V., et al. A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9):1507–1515, 2008.

    Article  PubMed  CAS  Google Scholar 

  3. Ahmed, T., T. S. Shimizu, and R. Stocker. Microfluidics for bacterial chemotaxis. Integr. Biol. 2(11–12):604–629, 2010.

    Article  CAS  Google Scholar 

  4. Alberts, B., et al., Molecular Biology of the Cell (5th ed.). New York, NY: Garland Science, Taylor and Francis Froup, L.L.C., 2007.

  5. Ambrosi, D., A. Gamba, and G. Serini. Cell directional and chemotaxis in vascular morphogenesis. Bull. Math. Biol. 66(6):1851–1873, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115:453–466, 1962.

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet, P., and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407(6801):249–257, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Chambers, A. F., A. C. Groom, and I. C. MacDonald. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2(8):563–572, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Chary, S. R., and R. K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc. Natl Acad. Sci. USA 86(14):5385–5389, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng, S.-Y., et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7:763–769, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Choi, N. W., et al. Microfluidic scaffolds for tissue engineering. Nat. Mater. 6(11):908–915, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Choi, N. W., et al. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo. Biomaterials, 2011. doi:10.1016/j.biomaterials.2011.11.048.

  13. Chrobak, K. M., D. R. Potter, and J. Tien. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res. 71(3):185–196, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Chung, S., et al. Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9(2):269–275, 2009.

    Article  PubMed  CAS  Google Scholar 

  15. Clague, M. J., S. Urbe, and J. de Lartigue. Phosphoinositides and the endocytic pathway. Exp. Cell Res. 315(9):1627–1631, 2009.

    Article  PubMed  CAS  Google Scholar 

  16. Condeelis, J., and J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3(12):921–930, 2003.

    Article  PubMed  CAS  Google Scholar 

  17. Condeelis, J., R. H. Singer, and J. E. Segall. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21:695–718, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Coussens, L. M., B. Fingleton, and L. M. Matrisian. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Cross, V. L., et al. Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials 31(33):8596–8607, 2010.

    Article  PubMed  CAS  Google Scholar 

  20. Cukierman, E., et al. Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. De Bruyn, P. P. The amoeboid movement of the mammalian leukocyte in tissue culture. Anat. Rec. 95:177–191, 1946.

    Article  Google Scholar 

  22. Diao, J., L. Young, S. Kim, E. A. Fogarty, S. M. Heilman, P. Zhou, M. L. Shuler, M. Wu, and M. P. DeLisa. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip 6:381–388, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Domansky, K., et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10(1):51–58, 2010.

    Article  PubMed  CAS  Google Scholar 

  25. Ehrbar, M., et al. Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophys. J. 100(2):284–293, 2011.

    Article  PubMed  CAS  Google Scholar 

  26. Eisenbach, M. Chemotaxis. London: Imperial College Press, 2004.

    Google Scholar 

  27. Fleury, M. E., K. C. Boardman, and M. A. Swartz. Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys. J. 91(1):113–121, 2006.

    Article  PubMed  CAS  Google Scholar 

  28. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29(6):15–18, 2002.

    Article  PubMed  CAS  Google Scholar 

  29. Fournier, R. L. Basic Transport Phenomena in Biomedical Engineering (1st ed.). London: Taylor & Francis, 1999.

    Google Scholar 

  30. Friedl, P., and K. Wolf. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188(1):11–19, 2010.

    Article  PubMed  CAS  Google Scholar 

  31. Gamba, A., et al. Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Phys. Rev. Lett. 90(11):118101, 2003.

    Article  PubMed  CAS  Google Scholar 

  32. Golden, A. P., and J. Tien. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7(6):720–725, 2007.

    Article  PubMed  CAS  Google Scholar 

  33. Griffith, L. G., and M. A. Swartz. Capturing complex 3D tissue physiology in vitro. Natl Rev. Mol. Cell Biol. 7(3):211–224, 2006.

    Article  CAS  Google Scholar 

  34. Haessler, U., et al. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11(4):827–835, 2009.

    Article  PubMed  CAS  Google Scholar 

  35. Haessler, U., et al. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc. Natl Acad. Sci. USA 108(14):5614–5619, 2011.

    Article  PubMed  CAS  Google Scholar 

  36. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144(5):646–674, 2011.

    Article  PubMed  CAS  Google Scholar 

  37. Helm, C. L. E., et al. Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc. Natl Acad. Sci. USA 102(44):15779–15784, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Helmlinger, G., et al. Interstitial pH and pO(2) gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3(2):177–182, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Herzmark, P., et al. Bound attractant at the leading vs. the trailing edge determines chemotactic prowess. Proc. Natl Acad. Sci. USA 104(33):13349–13354, 2007.

    Article  PubMed  Google Scholar 

  40. Jannat, R. A., M. Dembo, and D. A. Hammer. Traction forces of neutrophils migrating on compliant substrates. Biophys. J. 101(3):575–584, 2011.

    Article  PubMed  CAS  Google Scholar 

  41. Jeon, N. L., et al. Generation of solution and surface gradients using microfluidic systems. Langmuir 16(22):8311–8316, 2000.

    Article  CAS  Google Scholar 

  42. Jeon, N. L., et al. Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat. Biotechnol. 20(8):826–830, 2002.

    CAS  Google Scholar 

  43. Kay, R. R., et al. Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9(6):455–463, 2008.

    PubMed  CAS  Google Scholar 

  44. Kim, S., H. J. Kim, and N. L. Jeon. Biological applications of microfluidic gradient devices. Integr. Biol. 2(11–12):584–603, 2010.

    Article  CAS  Google Scholar 

  45. Kunze, A., et al. Micropatterning neural cell cultures in 3D with a multi-layered scaffold. Biomaterials 32(8):2088–2098, 2011.

    Article  PubMed  CAS  Google Scholar 

  46. Lammermann, T., et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453(7191):51–55, 2008.

    Article  PubMed  Google Scholar 

  47. Lebrun, L., and G. A. Junter. Diffusion of sucrose and dextran through agar gel membranes. Enzyme Microb. Technol. 15(12):1057–1062, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, P., et al. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8(1):35–41, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Lin, F. A microfluidics-based method for analyzing leukocyte migration to chemoattractant gradients. In: Methods in Enzymology, Vol. 461: Chemokines, Part B, edited by T. M. Handel, and D. J. Hamel. New York: Academic Press, 2009, pp. 333–347.

    Google Scholar 

  50. Lin, F., and E. C. Butcher. T cell chemotaxis in a simple microfluidic device. Lab Chip 6(11):1462–1469, 2006.

    Article  PubMed  CAS  Google Scholar 

  51. Lin, F., et al. Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration. Biochem. Biophys. Res. Commun. 319(2):576–581, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Lin, F., et al. Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Ann. Biomed. Eng. 33(4):475–482, 2005.

    Article  PubMed  Google Scholar 

  53. Maheshwari, G., H. S. Wiley, and D. A. Lauffenburger. Autocrine epidermal growth factor signaling stimulates directionally persistent mammary epithelial cell migration. J. Cell Biol. 155(7):1123–1128, 2001.

    Article  PubMed  CAS  Google Scholar 

  54. Mao, H. B., P. S. Cremer, and M. D. Manson. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. USA 100(9):5449–5454, 2003.

    Article  PubMed  CAS  Google Scholar 

  55. Meier, B., et al. Chemotactic cell trapping in controlled alternating gradient fields. Proc. Natl Acad. Sci. USA 108(28):11417–11422, 2011.

    Article  PubMed  CAS  Google Scholar 

  56. Mello, B. A., and Y. Tu. Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84(5):2943–2956, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Mosadegh, B., et al. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnol. Bioeng. 100(6):1205–1213, 2008.

    Article  PubMed  CAS  Google Scholar 

  58. Ng, C. P., C. L. Helm, and M. A. Swartz. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res. 68(3):258–264, 2004.

    Article  PubMed  Google Scholar 

  59. Ng, C. P., B. Hinz, and M. A. Swartz. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118(20):4731–4739, 2005.

    Article  PubMed  CAS  Google Scholar 

  60. Paguirigan, A. L., and D. J. Beebe. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture. Nat. Protoc. 2(7):1782–1788, 2007.

    Article  PubMed  CAS  Google Scholar 

  61. Palecek, S. P., et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616):537–540, 1997.

    Article  PubMed  CAS  Google Scholar 

  62. Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33(11):1–22, 2005.

    Article  Google Scholar 

  63. Pelham, R. J., Jr., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94(25):13661–13665, 1997.

    Article  PubMed  CAS  Google Scholar 

  64. Pluen, A., et al. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77(1):542–552, 1999.

    Article  PubMed  CAS  Google Scholar 

  65. Polacheck, W. J., J. L. Charest, and R. D. Kamm. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl Acad. Sci. USA 108(27):11115–11120, 2011.

    Article  PubMed  CAS  Google Scholar 

  66. Regehr, K. J., et al. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9(15):2132–2139, 2009.

    Article  PubMed  CAS  Google Scholar 

  67. Renkawitz, J., and M. Sixt. Mechanisms of force generation and force transmission during interstitial leukocyte migration. EMBO Rep. 11(10):744–750, 2010.

    Article  PubMed  CAS  Google Scholar 

  68. Ricart, B. G., et al. Dendritic cells distinguish individual chemokine signals through CCR7 and CXCR4. J. Immunol. 186(1):53–61, 2011.

    Article  PubMed  CAS  Google Scholar 

  69. Roussos, E. T., J. S. Condeelis, and A. Patsialou. Chemotaxis in cancer. Nat. Rev. Cancer 11(8):573–587, 2011.

    Article  PubMed  CAS  Google Scholar 

  70. Saadi, W., et al. Generation of stable concentration gradients in 2D and 3D environments using a microfluidic ladder chamber. Biomed. Microdevices 9(5):627–635, 2007.

    Article  PubMed  Google Scholar 

  71. Serini, G., et al. Modeling the early stages of vascular network assembly. EMBO J. 22(8):1771–1779, 2003.

    Article  PubMed  CAS  Google Scholar 

  72. Servant, G., et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287(5455):1037–1040, 2000.

    Article  PubMed  CAS  Google Scholar 

  73. Shamloo, A., and S. C. Heilshorn. Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22):3061–3068, 2010.

    Article  PubMed  CAS  Google Scholar 

  74. Shamloo, A., et al. Endothelial cell polarization and chemotaxis in a microfluidic device. Lab Chip 8(8):1292–1299, 2008.

    Article  PubMed  CAS  Google Scholar 

  75. Shields, J. D., et al. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538, 2007.

    Article  PubMed  CAS  Google Scholar 

  76. Song, L., et al. Dicyostelium discoideum chemotaxis: threshold for directed motion. Eur. J. Cell Biol. 85(9–10):981–989, 2006.

    Article  PubMed  CAS  Google Scholar 

  77. Squires, T. M., and S. R. Quake. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3):977–1026, 2005.

    Article  CAS  Google Scholar 

  78. Steeg, P. S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12(8):895–904, 2006.

    Article  PubMed  CAS  Google Scholar 

  79. Swartz, M. A. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 50(1–2):3–20, 2001.

    Article  PubMed  CAS  Google Scholar 

  80. Tayalia, P., E. Mazur, and D. J. Mooney. Controlled architectural and chemotactic studies of 3D cell migration. Biomaterials 32(10):2634–2641, 2011.

    Article  PubMed  CAS  Google Scholar 

  81. Verbridge, S. S., et al. Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. Tissue Eng. Part A 16:2133–2141, 2010.

    Article  PubMed  CAS  Google Scholar 

  82. Vickerman, V., et al. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477, 2008.

    Article  PubMed  CAS  Google Scholar 

  83. Walker, G. M., H. C. Zeringue, and D. J. Beebe. Microenvironment design considerations for cellular scale studies. Lab Chip 4(2):91–97, 2004.

    Article  PubMed  CAS  Google Scholar 

  84. Wang, S. J., et al. Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis. Exp. Cell Res. 300(1):180–189, 2004.

    Article  PubMed  CAS  Google Scholar 

  85. Wolf, K., et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160(2):267–277, 2003.

    Article  PubMed  CAS  Google Scholar 

  86. Wong, K., et al. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA 103(10):3639–3644, 2006.

    Article  PubMed  CAS  Google Scholar 

  87. Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.

    Article  CAS  Google Scholar 

  88. Zheng, Y., et al. Microstructured templates for directed growth and vascularization of soft tissue in vivo. Biomaterials 32(23):5391–5401, 2011.

    Article  PubMed  CAS  Google Scholar 

  89. Zicha, D., G. A. Dunn, and A. F. Brown. A new direct-viewing chemotaxis chamber. J. Cell Sci. 99(Pt 4):769–775, 1991.

    PubMed  Google Scholar 

  90. Zigmond, S. H. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75(2 Pt 1):606–616, 1977.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MW thanks insightful discussions with Abraham Stroock and Melody Swartz. Both authors thank the anonymous reviewers for their careful readings and very useful suggestions. The work was supported by the National Cancer Institute through award number R21CA138366, and through the Cornell Center on the Microenvironment & Metastasis with Award Number U54CA143876, and the Cornell Nanobiotechnology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Wu.

Additional information

Associate Editor Jong Hwan Sung oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.J., Wu, M. Microfluidics for Mammalian Cell Chemotaxis. Ann Biomed Eng 40, 1316–1327 (2012). https://doi.org/10.1007/s10439-011-0489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0489-9

Keywords

Navigation