Skip to main content
Log in

A model to die for: signaling to apoptotic cell removal in worm, fly and mouse

  • Clearance of dead cells: mechanisms, immune responses and implication in the development of diseases
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Programmed cell death is used during developmental morphogenesis to eliminate superfluous cells or cells with inappropriate developmental potential (e.g., self-reactive immune cells, tumorigenic cells). Recent work in genetic models has led to a number of key observations, revealing signal transduction pathways and identifying new roles for genes previously studied in corpse removal (e.g., removal of broken synapses in the nervous system). Further, studies using mouse models have suggested a role for removal of apoptotic cells in the establishment or maintenance of immune tolerance. In this review, we survey current knowledge of phagocytic pathways derived from studies in the nematode (Caenorhabditis elegans), the fly (Drosophila melanogaster), and mouse (Mus musculus) model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ABCA1/7:

ATP-binding cassette, sub-family A, member 1 or 7

ABL-1:

Related to oncogene Abl 1

ABI-1:

Abl interactor homologue 1

BAI1:

Brain-specific angiogenesis inhibitor-1

Ccz1:

Caffeine, calcium and zinc sensitive 1

CED (ced):

Cell death abnormal

CrkII:

v-crk Sarcoma virus CT10 oncogene homologue

Dock180:

Dedicator of cytokinesis (180 kDa), also called Dock1

DStim:

Drosophila stromal interaction molecule

DYN-1:

Dynamin related 1

ELMO:

Engulfment and cell motility

ER:

Endoplasmic reticulum

GEF:

Guanine nucleotide exchange factor

GULP:

Engulfment adapter, PTB domain containing 1

ITAM:

Immunoreceptor tyrosine-based activation motif

LXR:

Liver × receptor

LRP1:

Low density lipoprotein receptor-related protein 1

MEGF10:

Multiple EGF-like domains 10

MFG-E8:

Milk fat globule-EGF factor 8 (also called lactadherin)

MIG-2:

Abnormal cell migration 2

MOM-5:

More of MS 5

MTM-1:

MTM (myotubularin) family 1

Mon1:

Monensin sensitivity protein 1

ORAI:

ORAI calcium release-activated calcium modulator

PKC:

Protein kinase C

PPAR:

Peroxisome proliferation-activated receptor

PtdSer:

Phosphatidylserine

RABX-5:

Rab exchange factor

Rac1:

Ras-related C3 botulinum toxin substrate 1

RhoG:

Ras homologue gene family, member G

RME-6:

Receptor-mediated endocytosis 6

SAND-1:

SAND endocytosis protein family

SR-A:

Scavenger receptor, types I and II, isoform A

Syk:

Spleen tyrosine kinase

TAG-333:

Temporarily assigned gene name 333

TBC-2:

TBC (Tre-2/Bub2/Cvc16) domain family 2

TIM:

T-cell immunoglobulin and mucin domain containing

Ub:

Ubiquitin

Vps34:

Vacuolar protein sorting factor 34

UNC-73:

Uncoordinated 73

ZAP-70:

Zeta-chain (TCR) associated protein kinase (70 kDa)

References

  1. Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19:346–351

    Article  PubMed  CAS  Google Scholar 

  2. Kobayashi N, Karisola P, Pena-Cruz V et al (2007) TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity 27:927–940

    Article  PubMed  CAS  Google Scholar 

  3. Nakayama M, Akiba H, Takeda K et al (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830

    Article  PubMed  CAS  Google Scholar 

  4. Hanayama R, Tanaka M, Miyasaka K et al (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304:1147–1150

    Article  PubMed  CAS  Google Scholar 

  5. Lacy-Hulbert A, Smith AM, Tissire H et al (2007) Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci USA 104:15823–15828

    Article  PubMed  Google Scholar 

  6. Scott RS, McMahon EJ, Pop SM et al (2001) Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–211

    Article  PubMed  CAS  Google Scholar 

  7. Kinchen JM, Ravichandran KS (2007) Journey to the grave: signaling events regulating removal of apoptotic cells. J Cell Sci 120:2143–2149

    Article  PubMed  CAS  Google Scholar 

  8. Stuart LM, Ezekowitz RA (2008) Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 8:131–141

    Article  PubMed  CAS  Google Scholar 

  9. Mangahas PM, Zhou Z (2005) Clearance of apoptotic cells in Caenorhabditis elegans. Semin Cell Dev Biol 16:295–306

    Article  PubMed  CAS  Google Scholar 

  10. Zhou Z, Mangahas PM, Yu X (2004) The genetics of hiding the corpse: engulfment and degradation of apoptotic cells in C. elegans and D. melanogaster. Curr Top Dev Biol 63:91–143

    Article  PubMed  CAS  Google Scholar 

  11. Hoeppner DJ, Spector MS, Ratliff TM et al (2004) eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Dev Biol 274:125–138

    Article  PubMed  CAS  Google Scholar 

  12. Reece-Hoyes JS, Deplancke B, Barrasa MI et al (2009) The C. elegans Snail homolog CES-1 can activate gene expression in vivo and share targets with bHLH transcription factors. Nucleic Acids Res 37:3689–3698

    Article  PubMed  CAS  Google Scholar 

  13. Cameron S, Clark SG, McDermott JB, Aamodt E, Horvitz HR (2002) PAG-3, a Zn-finger transcription factor, determines neuroblast fate in C. elegans. Development 129:1763–1774

    PubMed  CAS  Google Scholar 

  14. Abraham MC, Lu Y, Shaham S (2007) A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12:73–86

    Article  PubMed  CAS  Google Scholar 

  15. Lettre G, Hengartner MO (2006) Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7:97–108

    Article  PubMed  CAS  Google Scholar 

  16. Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  PubMed  CAS  Google Scholar 

  17. Kinchen JM, Cabello J, Klingele D et al (2005) Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434:93–99

    Article  PubMed  CAS  Google Scholar 

  18. Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104:43–56

    Article  PubMed  CAS  Google Scholar 

  19. Su HP, Nakada-Tsukui K, Tosello-Trampont AC et al (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779

    Article  PubMed  CAS  Google Scholar 

  20. Kiss RS, Ma Z, Nakada-Tsukui K et al (2006) The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J Biol Chem 281:12081–12092

    Article  PubMed  CAS  Google Scholar 

  21. Yu X, Lu N, Zhou Z (2008) Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol 6:e61

    Article  PubMed  CAS  Google Scholar 

  22. Kiss RS, Elliott MR, Ma Z, Marcel YL, Ravichandran KS (2006) Apoptotic cells induce a phosphatidylserine-dependent homeostatic response from phagocytes. Curr Biol 16:2252–2258

    Article  PubMed  CAS  Google Scholar 

  23. Brooks-Wilson A, Marcil M, Clee SM et al (1999) Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 22:336–345

    Article  PubMed  CAS  Google Scholar 

  24. Wu YC, Horvitz HR (1998) The C. elegans cell corpse engulfment gene CED-7 encodes a protein similar to ABC transporters. Cell 93:951–960

    Article  PubMed  CAS  Google Scholar 

  25. Venegas V, Zhou Z (2007) Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol Biol Cell 18:3180–3192

    Article  PubMed  CAS  Google Scholar 

  26. Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443

    Article  PubMed  CAS  Google Scholar 

  27. Franc NC, Heitzler P, Ezekowitz RA, White K (1999) Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science 284:1991–1994

    Article  PubMed  CAS  Google Scholar 

  28. Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ (2003) Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38:567–580

    Article  PubMed  CAS  Google Scholar 

  29. Manaka J, Kuraishi T, Shiratsuchi A et al (2004) Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J Biol Chem 279:48466–48476

    Article  PubMed  CAS  Google Scholar 

  30. Awasaki T, Tatsumi R, Takahashi K et al (2006) Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:855–867

    Article  PubMed  CAS  Google Scholar 

  31. MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–881

    Article  PubMed  CAS  Google Scholar 

  32. Kurant E, Axelrod S, Leaman D, Gaul U (2008) Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133:498–509

    Article  PubMed  CAS  Google Scholar 

  33. Wu HH, Bellmunt E, Scheib JL et al (2009) Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat Neurosci 12:1534–1541

    Article  PubMed  CAS  Google Scholar 

  34. Hamon Y, Trompier D, Ma Z et al (2006) Cooperation between engulfment receptors: the case of ABCA1 and MEGF10. PLoS One 1:e120

    Article  PubMed  CAS  Google Scholar 

  35. Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S (1996) Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 93:12456–12460

    Article  PubMed  CAS  Google Scholar 

  36. Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  PubMed  CAS  Google Scholar 

  37. Doherty J, Logan MA, Tasdemir OE, Freeman MR (2009) Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci 29:4768–4781

    Article  PubMed  CAS  Google Scholar 

  38. Ziegenfuss JS, Biswas R, Avery MA et al (2008) Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453:935–939

    Article  PubMed  CAS  Google Scholar 

  39. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    PubMed  CAS  Google Scholar 

  40. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–187

    Article  PubMed  CAS  Google Scholar 

  41. Park SY, Jung MY, Kim HJ et al (2008) Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15:192–201

    Article  PubMed  CAS  Google Scholar 

  42. Park D, Tosello-Trampont AC, Elliott MR et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    Article  PubMed  CAS  Google Scholar 

  43. Schutters K, Reutelingsperger CP (2010) Phosphatidylserine targeting for diagnosis and treatment of human diseases. Apoptosis (current issue)

  44. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Wang J, Gengyo-Ando K et al (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549

    Article  PubMed  CAS  Google Scholar 

  46. Kuraishi T, Nakagawa Y, Nagaosa K et al (2009) Pretaporter, a Drosophila protein serving as a ligand for Draper in the phagocytosis of apoptotic cells. EMBO J 28:3868–3878

    Article  PubMed  CAS  Google Scholar 

  47. Kuraishi T, Manaka J, Kono M et al (2007) Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp Cell Res 313:500–510

    Article  PubMed  CAS  Google Scholar 

  48. Ogden CA, deCathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194:781–795

    Article  PubMed  CAS  Google Scholar 

  49. Mirnikjoo B, Balasubramanian K, Schroit AJ (2009) Suicidal membrane repair regulates phosphatidylserine externalization during apoptosis. J Biol Chem 284:22512–22516

    Article  PubMed  CAS  Google Scholar 

  50. Brugnera E, Haney L, Grimsley C et al (2002) Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat Cell Biol 4:574–582

    PubMed  CAS  Google Scholar 

  51. Lu M, Kinchen JM, Rossman KL et al (2004) PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nat Struct Mol Biol 11:756–762

    Article  PubMed  CAS  Google Scholar 

  52. Lu M, Kinchen JM, Rossman KL et al (2005) A steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. Curr Biol 15:371–377

    Article  PubMed  CAS  Google Scholar 

  53. Cote JF, Motoyama AB, Bush JA, Vuori K (2005) A novel and evolutionarily conserved PtdIns(3, 4, 5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol 7:797–807

    Article  PubMed  CAS  Google Scholar 

  54. Reddien PW, Horvitz HR (2000) CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2:131–136

    Article  PubMed  CAS  Google Scholar 

  55. Wu Y, Singh S, Georgescu MM, Birge RB (2005) A role for Mer tyrosine kinase in alphavbeta5 integrin-mediated phagocytosis of apoptotic cells. J Cell Sci 118:539–553

    Article  PubMed  CAS  Google Scholar 

  56. Akakura S, Singh S, Spataro M et al (2004) The opsonin MFG-E8 is a ligand for the alphavbeta5 integrin and triggers DOCK180-dependent Rac1 activation for the phagocytosis of apoptotic cells. Exp Cell Res 292:403–416

    Article  PubMed  CAS  Google Scholar 

  57. Albert ML, Kim JI, Birge RB (2000) alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905

    Article  PubMed  CAS  Google Scholar 

  58. Hsu TY, Wu YC (2010) Engulfment of apoptotic cells in C. elegans is mediated by integrin alpha/SRC signaling. Curr Biol 20:477–486

    Article  PubMed  CAS  Google Scholar 

  59. Gumienny TL, Brugnera E, Tosello-Trampont AC et al (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107:27–41

    Article  PubMed  CAS  Google Scholar 

  60. Cabello J, Neukomm LJ, Gunesdogan U et al (2010) The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac. PLoS Biol 8(2):e1000297

    Article  PubMed  CAS  Google Scholar 

  61. Angers S, Moon RT (2009) Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10:468–477

    PubMed  CAS  Google Scholar 

  62. Silva E, Au-Yeung HW, Van Goethem E, Burden J, Franc NC (2007) Requirement for a Drosophila E3-ubiquitin ligase in phagocytosis of apoptotic cells. Immunity 27:585–596

    Article  PubMed  CAS  Google Scholar 

  63. Cuttell L, Vaughan A, Silva E et al (2008) Undertaker, a Drosophila Junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534

    Article  PubMed  CAS  Google Scholar 

  64. Yang Y, Lu J, Rovnak J, Quackenbush SL, Lundquist EA (2006) SWAN-1, a Caenorhabditis elegans WD repeat protein of the AN11 family, is a negative regulator of Rac GTPase function. Genetics 174:1917–1932

    Article  PubMed  CAS  Google Scholar 

  65. Hurwitz ME, Vanderzalm PJ, Bloom L, Goldman J, Garriga G, Horvitz HR (2009) Abl kinase inhibits the engulfment of apoptotic [corrected] cells in Caenorhabditis elegans. PLoS Biol 7:e99

    Article  PubMed  CAS  Google Scholar 

  66. deBakker CD, Haney LB, Kinchen JM et al (2004) Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol 14:2208–2216

    Article  PubMed  CAS  Google Scholar 

  67. Tosello-Trampont AC, Kinchen JM, Brugnera E, Haney LB, Hengartner MO, Ravichandran KS (2007) Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells. Cell Death Differ 14(5):963–972

    PubMed  CAS  Google Scholar 

  68. Feller SM, Knudsen B, Hanafusa H (1994) c-Abl kinase regulates the protein binding activity of c-Crk. EMBO J 13:2341–2351

    PubMed  CAS  Google Scholar 

  69. Ren R, Ye ZS, Baltimore D (1994) Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev 8:783–795

    Article  PubMed  CAS  Google Scholar 

  70. Sheffield M, Loveless T, Hardin J, Pettitt J (2007) C. elegans enabled exhibits novel interactions with N-WASP, Abl, and cell-cell junctions. Curr Biol 17:1791–1796

    Article  PubMed  CAS  Google Scholar 

  71. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–690

    Article  PubMed  CAS  Google Scholar 

  72. Dikic I, Wakatsuki S, Walters KJ (2009) Ubiquitin-binding domains: from structures to functions. Nat Rev Mol Cell Biol 10:659–671

    Article  PubMed  CAS  Google Scholar 

  73. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  74. Lu Q, Zhang Y, Hu T, Guo P, Li W, Wang X (2008) C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135:1069–1080

    Article  PubMed  CAS  Google Scholar 

  75. Mangahas PM, Yu X, Miller KG, Zhou Z (2008) The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol 180:357–373

    Article  PubMed  CAS  Google Scholar 

  76. Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566

    Article  PubMed  CAS  Google Scholar 

  77. Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795

    Article  PubMed  CAS  Google Scholar 

  78. Yu X, Odera S, Chuang CH, Lu N, Zhou Z (2006) C. elegans Dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev Cell 10:743–757

    Article  PubMed  CAS  Google Scholar 

  79. Kinchen JM, Ravichandran KS (2010) Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464(7289):778–782

    Article  PubMed  CAS  Google Scholar 

  80. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827

    Article  PubMed  CAS  Google Scholar 

  81. Seabra MC, Wasmeier C (2004) Controlling the location and activation of Rab GTPases. Curr Opin Cell Biol 16:451–457

    Article  PubMed  CAS  Google Scholar 

  82. Xiao H, Chen D, Fang Z et al (2009) Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans. Mol Biol Cell 20:21–32

    Article  PubMed  CAS  Google Scholar 

  83. Li W, Zou W, Zhao D et al (2009) C. elegans Rab GTPase activating protein TBC-2 promotes cell corpse degradation by regulating the small GTPase RAB-5. Development 136:2445–2455

    Article  PubMed  CAS  Google Scholar 

  84. Zou W, Lu Q, Zhao D et al (2009) Caenorhabditis elegans myotubularin MTM-1 negatively regulates the engulfment of apoptotic cells. PLoS Genet 5:e1000679

    Article  PubMed  CAS  Google Scholar 

  85. Fuentes-Medel Y, Logan MA, Ashley J, Ataman B, Budnik V, Freeman MR (2009) Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol 7:e1000184

    Article  PubMed  CAS  Google Scholar 

  86. Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 171:2–8

    Article  PubMed  CAS  Google Scholar 

  87. Elliott MR, Chekeni FB, Trampont PC et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  PubMed  CAS  Google Scholar 

  88. Lauber K, Bohn E, Krober SM et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730

    Article  PubMed  CAS  Google Scholar 

  89. Truman LA, Ford CA, Pasikowska M et al (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:5026–5036

    Article  PubMed  CAS  Google Scholar 

  90. Peter C, Wesselborg S, Herrmann M, Lauber K (2010) Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis (this issue)

  91. Cohen PL, Caricchio R, Abraham V et al (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196:135–140

    Article  PubMed  CAS  Google Scholar 

  92. Ishimoto Y, Ohashi K, Mizuno K, Nakano T (2000) Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J Biochem 127:411–417

    PubMed  CAS  Google Scholar 

  93. Sather S, Kenyon KD, Lefkowitz JB et al (2007) A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109:1026–1033

    Article  PubMed  CAS  Google Scholar 

  94. Mukundan L, Odegaard JI, Morel CR et al (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15:1266–1272

    Article  PubMed  CAS  Google Scholar 

  95. A-Gonzalez N, Bensinger SJ, Hong C et al (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–258

    Article  PubMed  CAS  Google Scholar 

  96. Franz S, Gaipl US, Munoz LE et al (2006) Apoptosis and autoimmunity: when apoptotic cells break their silence. Curr Rheumatol Rep 8:245–247

    Article  PubMed  CAS  Google Scholar 

  97. Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525–4528

    PubMed  CAS  Google Scholar 

  98. Mevorach D (1999) The immune response to apoptotic cells. Ann N Y Acad Sci 887:191–198

    Article  PubMed  CAS  Google Scholar 

  99. Devitt A, Parker KG, Ogden CA et al (2004) Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice. J Cell Biol 167:1161–1170

    Article  PubMed  CAS  Google Scholar 

  100. Krysko DV, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  101. Patel VA, Lee DJ, Longacre-Antoni A et al (2009) Apoptotic and necrotic cells as sentinels of local tissue stress and inflammation: response pathways initiated in nearby viable cells. Autoimmunity 42:317–321

    Article  PubMed  CAS  Google Scholar 

  102. Torchinsky MB, Garaude J, Blander JM (2010) Infection and apoptosis as a combined inflammatory trigger. Curr Opin Immunol 22:55–62

    Article  PubMed  CAS  Google Scholar 

  103. Torchinsky MB, Garaude J, Martin AP, Blander JM (2009) Innate immune recognition of infected apoptotic cells directs T(H)17 cell differentiation. Nature 458:78–82

    Article  PubMed  CAS  Google Scholar 

  104. Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440:808–812

    Article  PubMed  CAS  Google Scholar 

  105. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018

    Article  PubMed  CAS  Google Scholar 

  106. Kirsch T, Woywodt A, Beese M et al (2007) Engulfment of apoptotic cells by microvascular endothelial cells induces proinflammatory responses. Blood 109:2854–2862

    PubMed  CAS  Google Scholar 

  107. Canbay A, Feldstein AE, Higuchi H et al (2003) Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38:1188–1198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank K. S. Ravichandran and Cynthia Grimsley-Myers for helpful comments and discussion on this review. JMK is supported by a Scientist Development Grant from the American Heart Association and a grant from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Kinchen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinchen, J.M. A model to die for: signaling to apoptotic cell removal in worm, fly and mouse. Apoptosis 15, 998–1006 (2010). https://doi.org/10.1007/s10495-010-0509-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0509-5

Keywords

Navigation