Skip to main content
Log in

Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAR:

Bifunctional apoptosis regulator

DIABLO:

Direct IAP-binding protein

DISC:

Death-inducing signaling complex

FasL:

Fas ligand

N2A FasL:

Multimerised FasL obtained from stably transfected Neuro2A cells

PARP:

Poly ADP ribose polymerase

Q-VD-OPh:

Quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methylketon

Smac:

Second mitochondrial-derived activator of caspase

wt:

Wild-type

XIAP:

X-chromosome-linked IAP (inhibitor of apoptosis protein)

References

  1. Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407:796–801

    Article  PubMed  CAS  Google Scholar 

  2. Kanzler S, Galle PR (2000) Apoptosis and the liver. Semin Canc Biol 10:173–184

    Article  CAS  Google Scholar 

  3. Osagawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S (1993) Lethal effect of the anti-Fas antibody in mice. Nature 364:806–809

    Article  Google Scholar 

  4. Galle PR, Krammer PH (1998) CD95-induced apoptosis in human liver disease. Semin Liver Dis 18:141–151

    Article  PubMed  CAS  Google Scholar 

  5. Canbay A, Friedman S, Gores GJ (2004) Apoptosis: the nexus of liver injury and fibrosis. Hepatology 39:273–278

    Article  PubMed  Google Scholar 

  6. Ni R, Tomita Y, Matsuda K, Ichihara A, Ishimura K, Ogasawara J, Nagata S (1994) Fas-mediated apoptosis in primary cultured mouse hepatocytes. Exp Cell Res 215:332–337

    Article  PubMed  CAS  Google Scholar 

  7. Schüngel S, Buitrago-Molina LE, devi Nalapareddy P, Lebofsky M, Manns MP, Jaeschke H, Gross A, Vogel A (2009) The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology 50:1558–1566

    Article  PubMed  Google Scholar 

  8. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891

    Article  PubMed  CAS  Google Scholar 

  9. Kaufmann T, Tai L, Ekert PG, Huang DCS, Norris F, Lindemann RK, Johnstone RW, Dixit VM, Strasser A (2007) The BH3-only protein Bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell (129):423–433

    Article  Google Scholar 

  10. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  CAS  Google Scholar 

  11. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  12. Chang DW, Xing Z, Capacio VL, Peter ME, Yang X (2003) Interdimer processing mechanism of procaspase-8 activation. EMBO J 22:4132–4142

    Article  PubMed  CAS  Google Scholar 

  13. Medema JP, Scaffidi C, Kischkel FC, Schevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 16:2794–2804

    Article  PubMed  CAS  Google Scholar 

  14. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273:2926–2930

    Article  PubMed  CAS  Google Scholar 

  15. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while Bcl-xL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274(2):1156–1163

    Article  PubMed  CAS  Google Scholar 

  16. Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zörnig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129:447–450

    Article  PubMed  CAS  Google Scholar 

  17. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  18. Desbarats J, Newell MK (2000) Fas engagement accelerates liver regeneration after partial hepatectomy. Nat Med 6:920–923

    Article  PubMed  CAS  Google Scholar 

  19. Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A, Waisman A, Brenner O, Haffner R, Gustafsson E, Ramakrishnan P, Lapidot T, Wallach D (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984

    PubMed  CAS  Google Scholar 

  20. Kang TB, Oh GS, Scandella E, Bolinger B, Ludewig B, Kovalenko A, Wallach D (2008) Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J Immunol 181:2522–2532

    PubMed  CAS  Google Scholar 

  21. Barbero S, Mielgo A, Torres V, Teitz T, Shields DJ, Mikolon D, Bogyo M, Barilà D, Lahti JM, Schlaepfer D, Stupack DG (2009) Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res 69(9):3755–3763

    Article  PubMed  CAS  Google Scholar 

  22. Kovalenko A, Kim JC, Kang TB, Raiput A, Bogdanoy K, Dittrich-Breiholz O, Kracht M, Brenner O, Wallach D (2009) Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med 206:2161–2177

    Article  PubMed  CAS  Google Scholar 

  23. Keller N, Mares J, Zerbe O, Grütter MG (2009) Structural and biochemical studies on procaspase-8: new insights on initiator caspase activation. Structure 17:438–448

    Article  PubMed  CAS  Google Scholar 

  24. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279

    Article  PubMed  CAS  Google Scholar 

  25. Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    Article  PubMed  CAS  Google Scholar 

  26. Oberst A, Pop C, Tremblay AG, Blais V, Denault JB, Salvesen GS, Green DR (2010) Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J Biol Chem 285(22):16632–16642

    Article  PubMed  CAS  Google Scholar 

  27. Blanc C, Deveraux QL, Krajewski S, Jänicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390

    PubMed  CAS  Google Scholar 

  28. Fujita E, Egashira J, Urase K, Kuida K, Momoi T (2001) Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ 8:335–344

    Article  PubMed  CAS  Google Scholar 

  29. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144(2):281–292

    Article  PubMed  CAS  Google Scholar 

  30. Van de Craen M, Declercq W, Van den brande I, Fiers W, Vandenabeele P (1999) The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ 6:1117–1124

    Article  PubMed  Google Scholar 

  31. Eissing T, Conzelmann H, Gilles ED, Allgöwer F, Bullinger E, Scheurich P (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279(35):36892–36897

    Article  PubMed  CAS  Google Scholar 

  32. Angeli D, Ferrell JE, Sontag ED (2004) Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 101(7):1822–1827

    Article  PubMed  CAS  Google Scholar 

  33. Ferrell JE (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2):140–148

    Article  PubMed  CAS  Google Scholar 

  34. Legewie S, Blüthgen N, Herzel H (2006) Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol 2(9):e120

    Article  PubMed  Google Scholar 

  35. Tang D, Lahti JM, Kidd VJ (2000) Caspase-8 activation and Bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 275(13):9303–9307

    Article  PubMed  CAS  Google Scholar 

  36. Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalyzed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7:556–565

    Article  PubMed  CAS  Google Scholar 

  37. Walter D, Schmich K, Vogel S, Pick R, Kaufmann T, Hochmuth FC, Haber A, Neubert K, McNelly S, von Weizsäcker F, Merfort I, Maurer U, Strasser A, Borner C (2008) Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology 48:1942–1953

    Article  PubMed  CAS  Google Scholar 

  38. Berger AB, Witte MD, Denault JB, Sadaghiani AM, Sexton KMB, Salvesen GS, Bogyo M (2006) Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol Cell 23:509–521

    Article  PubMed  CAS  Google Scholar 

  39. Klingmüller U, Bauer A, Bohl S, Nickel PJ, Breitkopf K, Dooley S et al (2006) Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Syst Biol (Stevenage) 153:433–447

    Article  Google Scholar 

  40. Shimizu M, Fontana A, Takeda Y, Yagita H, Yoshimoto T, Matsuzawa A (1999) Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma Neuro-2a cells. J Immunol 162:7350–7357

    PubMed  CAS  Google Scholar 

  41. Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  42. Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781

    Article  PubMed  CAS  Google Scholar 

  43. Würstle ML, Laussmann MA, Rehm M (2010) The caspase-8 dimerization/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signaling. J Biol Chem 285(43):33209–33218

    Article  PubMed  Google Scholar 

  44. Eyrisch S. Medina-Franco JL, Helms V (2011) Transient pockets on XIAP-BIR2: toward the characterization of putative binding sites of small-molecules XIAP inhibitors. J Mol Model. doi: 10.1007/s00894-011-1217-y

  45. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DCS, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(20):1035–1039

    Article  PubMed  CAS  Google Scholar 

  46. Madesh M, Antonsson B, Srinivasula SM, Alnemri ES, Hajnóczky G (2002) Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem 277(7):5651–5659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are particularly grateful to Rebekka Schlatter, Institute for System Dynamics, University of Stuttgart, Germany, Ulrich Maurer and Dorothée Walter, University of Freiburg, Germany for their useful comments and constructive advice on the manuscript. We also thank Adriano Fontana, University Clinic Zurich, Switzerland for the N2A FasL cells, John Silke, La Trobe University, Melbourne, Australia for the XIAP−/− mice and David Huang, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia, for the monoclonal anti-Bid antibody. We gratefully acknowledge support from The Virtual Liver Network which is sponsored by the German Federal Ministry of Education and Research to KF, CK, JT and CB, and from the National Institutes of Health (NIH)—grant R01 EB005011 to MB. CB is also supported by the Excellence Initiative of the German Federal and State Governments (GSC-4, Spemann Graduate School of Biology and Medicine, SGBM).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Borner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2011_691_MOESM1_ESM.tif

Supplementary Fig. 1 The general caspase inhibitor Q-VD-OPh (QVD) blocks not only FasL-induced caspase-3 but also caspase-8 processing and activation. a DEVDase assay and b anti-caspase-3, -caspase-8, -XIAP and –Bid western blotting of wt primary mouse hepatocytes challenged with 100 ng/mL N2A FasL in the presence or absence of 25 μM Q-VD-OPh. Actin served as a loading control. Note that the p43 caspase-8 fragment is not formed in the presence of Q-VD-OPh indicating that this inhibitor also blocks caspase-8 autoprocessing at the DISC (in contrast to AB06 which only blocks caspase-3, but p43 caspase-8 formation is maintained, see Fig. 3) (TIFF 1046 kb)

Supplementary material 2 (TIFF 4466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, K.S., Kreutz, C., MacNelly, S. et al. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis 17, 503–515 (2012). https://doi.org/10.1007/s10495-011-0691-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0691-0

Keywords

Navigation