Skip to main content
Log in

Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Necroptosis is a nonapoptotic cell death pathway. We aim to study the effect of necrostatin-1 (a specific necroptosis inhibitor) in cisplatin-induced injury. We analyzed the effect of the combined use of inhibitors of apoptosis (z-vad) and necroptosis (necrostatin-1) in acute kidney injury by cisplatin in human proximal tubule cells. Our results showed moderate effectiveness in cytoprotection after treatment with z-vad. But the concomitant use of inhibitors (z-vad and necrostatin-1) presented synergistic and additive protection. The present study analyzed the caspase-3 activity and we observed a significant decrease in the group treated with z-vad and cisplatin. However we did not observe changes in the group treated with both inhibitors (z-vad and necrostatin-1) and cisplatin. Thus, demonstrating that necroptosis is a caspase-independent mechanism. We also analyzed the effect of necrostatin-1 in vivo model. C57BL/6 mice were treated with cisplatin and/or inhibitors. The concomitant use of inhibitors (z-vad and necrostatin-1) recovered renal function and decreased levels of urinary Ngal. Additionally, we analyzed the expression of RIP-1, a specific marker for necroptosis. In animals treated with cisplatin and z-VAD levels of RIP-1 were higher. This result reinforces that necroptosis occurs only in conditions where apoptosis was blocked. However, the use of both inhibitors (z-vad and necrostatin-1) provided additional protection. In conclusion, our study has a significant potential to show in vitro and in vivo protection obtained by necrostatin-1. Therefore, our results suggest that necroptosis may be an important mechanism of cell death after kidney injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Case J, Khan S, Khalid R, Khan A (2013) Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract 2013:1–9

    Article  Google Scholar 

  2. Han WK (2012) Biomarkers for early detection of acute kidney injury. Curr Biom Find 2:77–85

    Article  CAS  Google Scholar 

  3. Palevsky PM (2013) Renal replacement therapy in acute kidney injury. Adv Chronic Kidney Dis 20(1):76–84

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prowle JR (2013) Acute kidney injury: an intensivist’s perspective. Pediatr Nephrol 29(1):13–21

    Article  PubMed  Google Scholar 

  5. Ibrahim AE, Sarhane KA, Fagan SP, Goverman J (2013) Renal dysfunction in burns: a review. Ann Burns Fire Disasters 26(1):16–25

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Kam Tao Li P, Burdmann EA, Mehta RL (2013) Acute kidney injury: global health alert. J Nephropathol 2(2):90–97

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W (2013) Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant 28(2):254–273

    Article  PubMed  CAS  Google Scholar 

  8. Linkermann A, De Zen F, Weinberg J, Kunzendorf U, Krautwald S (2012) Programmed necrosis in acute kidney injury. Nephrol Dial Transplant 27(9):3412–3419

    Article  PubMed  CAS  Google Scholar 

  9. Wei Q, Dong G, Yang T, Megyesi J, Price PM et al (2007) Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 293(4):1282–1291

    Article  CAS  Google Scholar 

  10. Antczak C, Takagi T, Ramirez CN, Radu C, Djaballah H (2009) Live-cell imaging of caspase activation for high-content screening. J Biomol Screen 14(8):956–969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119

    Article  PubMed  CAS  Google Scholar 

  12. Tristão VR, Gonçalves PF, Dalboni MA, Batista MC, de Durão MS Jr et al (2012) Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren Fail 34(3):373–377

    Article  PubMed  CAS  Google Scholar 

  13. Smith CC, Davidson SM, Lim SY, Simpkin JC, Hothersall JS et al (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21(4):227–233

    Article  PubMed  CAS  Google Scholar 

  14. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Li Y, Yang X, Ma C, Qiao J, Zhang C (2008) Necroptosis contributes to the NMDA-induced excitotoxicity in rat’s cultured cortical neurons. Neurosci Lett 447(2–3):120–123

    Article  PubMed  CAS  Google Scholar 

  16. Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14(5):674–686

    Article  PubMed  CAS  Google Scholar 

  17. Daemen MA, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TG et al (1999) Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 104(5):541–549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guo R, Wang Y, Minto AW, Quigg RJ, Cunningham PN (2004) Acute renal failure in endotoxemia is dependent on caspase activation. J Am Soc Nephrol 15(12):3093–3102

    Article  PubMed  Google Scholar 

  19. Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 302(1):8–17

    Article  PubMed  CAS  Google Scholar 

  20. Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC et al (2010) Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 1355:189–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sawicka E, Długosz A, Rembacz KP, Guzik A (2013) The effects of coenzyme Q10 and baicalin in cisplatin-induced lipid peroxidation and nitrosative stress. Acta Pol Pharm 70(6):977–985

    PubMed  CAS  Google Scholar 

  22. Tiwari MM, Brock RW, Megyesi JK, Kaushal GP, Mayeux PR (2005) Disruption of renal peritubular blood flow in lipopolysaccharide-induced renal failure: role of nitric oxide and caspases. Am J Physiol Renal Physiol 289(6):1324–1332

    Article  CAS  Google Scholar 

  23. Linkermann A, Bräsen JH, Himmerkus N, Liu S, Huber TB et al (2012) Rip-1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int 81(8):751–761

    Article  PubMed  CAS  Google Scholar 

  24. Li J, Wang Y, Du L, Xu C, Cao J et al (2014) Radiation-induced cytochrome c release and the neuroprotective effects of the pan-caspase inhibitor z-VAD-fmk in the hypoglossal nucleus. Exp Ther Med 7(2):383–388

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB et al (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA 110(29):12024–12029

    Article  PubMed  PubMed Central  Google Scholar 

  26. Price PM, Hodeify R (2012) A possible mechanism of renal cell death after ischemia/reperfusion. Kidney Int 81(8):720–721

    Article  PubMed  PubMed Central  Google Scholar 

  27. Haase-Fielitz A, Bellomo R, Devarajan P, Bennett M, Story D (2009) The predictive performance of plasma neutrophil gelatinase-associated lipocalin (NGAL) increases with grade of acute kidney injury. Nephrol Dial Transplant 24:3349–3354

    Article  PubMed  CAS  Google Scholar 

  28. Tonomura Y, Tsuchiya N, Torii M, Uehara T (2010) Evaluation of the usefulness of urinary biomarkers for nephrotoxicity in rats. Toxicology 273(1–3):53–59

    Article  PubMed  CAS  Google Scholar 

  29. Mori K, Nakao K (2007) Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 71(10):967–970

    Article  PubMed  CAS  Google Scholar 

  30. Mishra J, Mori K, Ma Q, Kelly C, Yang J et al (2004) Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol 15(12):3073–3082

    Article  PubMed  Google Scholar 

  31. Quesada A, Vargas F, Montoro-Molina S, O’Valle F, Rodríguez-Martínez MD et al (2012) Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. PLoS One 7(7):40402

    Article  CAS  Google Scholar 

  32. Zarjou A, Bolisetty S, Joseph R, Traylor A, Apostolov EO et al (2013) Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123(10):4423–4434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286(3):552–563

    Article  Google Scholar 

  34. Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV (2006) Urinary kidney injury molecule-1: sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290(2):517–529

    Article  CAS  Google Scholar 

  35. Bonventre JV (2009) Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant 24(11):3265–3268

    Article  PubMed  CAS  Google Scholar 

  36. Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K et al (2003) Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 14(10):2534–2543

    Article  PubMed  CAS  Google Scholar 

  37. Bonventre JV (2003) Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 1:55–61

    Article  Google Scholar 

  38. Al-Kharusi N, Babiker HA, Al-Salam S, Waly MI, Nemmar A et al (2013) Ellagic acid protects against cisplatin-induced nephrotoxicity in rats: a dose-dependent study. Eur Rev Med Pharmacol Sci 17(3):299–310

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by Grants from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) No. 08/09773-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Regina Tristão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tristão, V.R., Pessoa, E.A., Nakamichi, R. et al. Synergistic effect of apoptosis and necroptosis inhibitors in cisplatin-induced nephrotoxicity. Apoptosis 21, 51–59 (2016). https://doi.org/10.1007/s10495-015-1190-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-015-1190-5

Keywords

Navigation