Skip to main content

Advertisement

Log in

Biogenic Amines in Rett Syndrome: The Usual Suspects

  • Review
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Rett syndrome (RTT) is a severe postnatal neurological disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. In affected children, most biological parameters, including brain structure, are normal (although acquired microcephaly is usually present). However, in recent years, a deficit in bioaminergic metabolism has been identified at the cellular and molecular levels, in more than 200 patients. Recently available transgenic mouse strains with a defective Mecp2 gene also show abnormalities, strongly suggesting that there is a direct link between the function of the MECP2 protein and the metabolism of biogenic amines. Biogenic amines appear to have an important role in the pathophysiology of Rett syndrome, for several reasons. Firstly, biogenic amines modulate a large number of autonomic and cognitive functions. Secondly, many of these functions are affected in RTT patients. Thirdly, biogenic amines are the only neurotransmitters that have repeatedly been found to be altered in RTT patients. Importantly, pharmacological interventions can be envisaged to try to counteract the deficits observed. Here, we review the available human and mouse data and present how they have been and could be used in the development of pharmacological treatments for children affected by the syndrome. Given our current knowledge and the tools available, modulating biogenic amine metabolism may prove to be the most promising strategy for improving the life quality of Rett syndrome patients in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abuhatzira L, Makedonski K, Kaufman Y, Razin A, Shemer R (2007) MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics 2(4):214–222

    PubMed  Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    PubMed  Google Scholar 

  • Amir R, Dahle EJ, Toriolo D, Zoghbi HY (2000) Candidate gene analysis in Rett syndrome and the identification of 21 SNPs in Xq. Am J Med Genet 90(1):69–71

    PubMed  Google Scholar 

  • Amir RE, Sutton VR, Van den Veyver IB (2005) Newborn screening and prenatal diagnosis for Rett syndrome: implications for therapy. J Child Neurol 20(9):779–783

    PubMed  Google Scholar 

  • Andaku DK, Mercadante MT, Schwartzman JS (2005) Buspirone in Rett syndrome respiratory dysfunction. Brain Dev 27(6):437–438

    PubMed  Google Scholar 

  • Archer HL, Evans J, Edwards S, Colley J, Newbury-Ecob R, O’Callaghan F, Huyton M, O’Regan M, Tolmie J, Sampson J, Clarke A, Osborne J (2006) CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet 43:729–734

    PubMed  Google Scholar 

  • Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A (2008) FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet 83(1):89–93

    PubMed  Google Scholar 

  • Armstrong DD (1997) Review of Rett syndrome. J Neuropathol Exp Neurol 56(8):843–849

    PubMed  Google Scholar 

  • Armstrong DD (2001) Rett syndrome neuropathology review 2000. Brain Dev 23S1:S72–S76

    Google Scholar 

  • Armstrong DD (2002) Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev 8(2):72–76

    PubMed  Google Scholar 

  • Azmitia EC (2001) Neuronal instability: implications for Rett’s syndrome. Brain Dev 23S1:S1–S10

    Google Scholar 

  • Bahi-Buisson N, Nectoux J, Rosas-Vargas H, Milh M, Boddaert N, Girard B, Cances C, Ville D, Afenjar A, Rio M, Héron D, N’guyen Morel MA, Arzimanoglou A, Philippe C, Jonveaux P, Chelly J, Bienvenu T (2008) Key clinical features to identify girls with CDKL5 mutations. Brain 131:2647–2661

    PubMed  Google Scholar 

  • Baruch P, Artaud F, Godeheu G, Barbeito L, Glowinski J, Chéramy A (1988) Substance P and neurokinin A regulate by different mechanisms dopamine release from dendrites and nerve terminals of the nigrostriatal dopaminergic neurons. Neuroscience 25(3):889–898

    PubMed  Google Scholar 

  • Bauman ML, Kemper TL, Arin DM (1995) Pervasive neuroanatomic abnormalities of the brain in three cases of Rett’s syndrome. Neurology 45(8):1581–1586

    PubMed  Google Scholar 

  • Ben Zeev B, Bebbington A, Ho G, Leonard H, de Klerk N, Gak E, Vecsler M, Christodoulou J (2009) The common BDNF polymorphism may be a modifier of disease severity in Rett syndrome. Neurology 72(14):1242–1247

    PubMed  Google Scholar 

  • Bissonnette JM, Knopp SJ (2008) Effect of inspired oxygen on periodic breathing in methy-CpG-binding protein 2 (Mecp2) deficient mice. J Appl Physiol 104(1):198–204

    PubMed  Google Scholar 

  • Boltshauser E, Niederwieser A, Kierat L, Haenggeli CA (1986) Pterins in patients with Rett syndrome. Am J Med Genet S1:317–321

    Google Scholar 

  • Bräutigam C, Steenbergen-Spanjers GC, Hoffmann GF, Dionisi-Vici C, van den Heuvel LP, Smeitink JA, Wevers RA (1999) Biochemical and molecular genetic characteristics of the severe form of tyrosine hydroxylase deficiency. Clin Chem 45(12):2073–2078

    PubMed  Google Scholar 

  • Breese GR, Baumeister A, Napier TC, Frye GD, Mueller RA (1985) Evidence that D-1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine. J Pharmacol Exp Ther 235(2):287–295

    PubMed  Google Scholar 

  • Brero A, Easwaran HP, Nowak D, Grunewald I, Cremer T, Leonhardt H, Cardoso MC (2005) Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation. J Cell Biol 169(5):733–743

    PubMed  Google Scholar 

  • Brücke T, Sofic E, Killian W, Rett A, Riederer P (1987) Reduced concentrations and increased metabolism of biogenic amines in a single case of Rett-syndrome: a postmortem brain study. J Neural Transm 68(3–4):315–324

    PubMed  Google Scholar 

  • Burd L, Kemp R, Knull H, Loveless D (1990) A review of the biochemical pathways studied and abnormalities reported in the Rett syndrome. Brain Dev 12(4):444–448

    PubMed  Google Scholar 

  • Burroni L, Aucone AM, Volterrani D, Hayek Y, Bertelli P, Vella A, Zappella M, Vattimo A (1997) Brain perfusion abnormalities in Rett syndrome: a qualitative and quantitative SPET study with 99Tc(m)-ECD. Nucl Med Commun 18(6):527–534

    PubMed  Google Scholar 

  • Carter JC, Lanham DC, Pham D, Bibat G, Naidu S, Kaufmann WE (2008) Selective cerebral volume reduction in Rett syndrome: a multiple-approach MR imaging study. AJNR Am J Neuroradiol 29(3):436–441

    PubMed  Google Scholar 

  • Casanova MF, Naidu S, Goldberg TE, Moser HW, Khoromi S, Kumar A, Kleinman JE, Weinberger DR (1991) Quantitative magnetic resonance imaging in Rett syndrome. J Neuropsychiatry Clin Neurosci 3(1):66–72

    PubMed  Google Scholar 

  • Cassel S, Carouge D, Gensburger C, Anglard P, Burgun C, Dietrich JB, Aunis D, Zwiller J (2006) Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70(2):487–492

    PubMed  Google Scholar 

  • Chadwick LH, Wade PA (2007) MeCP2 in Rett syndrome: transcriptional repressor or chromatin architectural protein? Curr Opin Genet Dev 17(2):121–125

    PubMed  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56(3):422–437

    PubMed  Google Scholar 

  • Chang Q, Khare G, Dani V, Nelson S, Jaenisch R (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49(3):341–348

    PubMed  Google Scholar 

  • Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331

    PubMed  Google Scholar 

  • Chen WG, Chang Q, Lin Y, Meissner A, West AE, Griffith EC, Jaenisch R, Greenberg ME (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646):885–889

    PubMed  Google Scholar 

  • Chiron C, Bulteau C, Loc’h C, Raynaud C, Garreau B, Syrota A, Mazière B (1993) Dopaminergic D2 receptor SPECT imaging in Rett syndrome: increase of specific binding in striatum. J Nucl Med 34(10):1717–1721

    PubMed  Google Scholar 

  • Cirignotta F, Lugaresi E, Montagna P (1986) Breathing impairment in Rett syndrome. Am J Med Genet S1:167–173

    Google Scholar 

  • Cornford ME, Philippart M, Jacobs B, Scheibel AB, Vinters HV (1994) Neuropathology of Rett syndrome: case report with neuronal and mitochondrial abnormalities in the brain. J Child Neurol 9(4):424–431

    PubMed  Google Scholar 

  • David HN, Ansseau M, Abraini JH (2005) Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of “intact” animals. Brain Res Brain Res Rev 50(2):336–360

    PubMed  Google Scholar 

  • Deguchi K, Antalffy BA, Twohill LJ, Chakraborty S, Glaze DG, Armstrong DD (2000) Substance P immunoreactivity in Rett syndrome. Pediatr Neurol 22(4):259–266

    PubMed  Google Scholar 

  • Dionisi-Vici C, Hoffmann GF, Leuzzi V, Hoffken H, Bräutigam C, Rizzo C, Steebergen-Spanjers GC, Smeitink JA, Wevers RA (2000) Tyrosine hydroxylase deficiency with severe clinical course: clinical and biochemical investigations and optimization of therapy. J Pediatr 136(4):560–562

    PubMed  Google Scholar 

  • Do T, Kerr B, Kuzhikandathil EV (2007) Brain-derived neurotrophic factor regulates the expression of D1 dopamine receptors. J Neurochem 100(2):416–428

    PubMed  Google Scholar 

  • Dotti MT, Guideri F, Acampa M, Orrico A, Battisti C, Federico A (2004) Autonomic dysfunction in mental retardation and spastic paraparesis with MECP2 mutation. J Child Neurol 19(12):964–966

    PubMed  Google Scholar 

  • Dunn HG, Stoessl AJ, Ho HH, MacLeod PM, Poskitt KJ, Doudet DJ, Schulzer M, Blackstock D, Dobko T, Koop B, de Amorim GV (2002) Rett syndrome: investigation of nine patients, including PET scan. Can J Neurol Sci 29(4):345–357

    PubMed  Google Scholar 

  • Ebner K, Singewald N (2007) Stress-induced release of substance P in the locus coeruleus modulates cortical noradrenaline release. Naunyn Schmiedebergs Arch Pharmacol 376(1–2):73–82

    PubMed  Google Scholar 

  • Elia M, Falco M, Ferri R, Spalletta A, Bottitta M, Calabrese G, Carotenuto M, Musumeci SA, Lo Giudice M, Fichera M (2008) CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy. Neurology 71(13):997–999

    PubMed  Google Scholar 

  • Fitzgerald PM, Jankovic J, Percy AK (1990) Rett syndrome and associated movement disorders. Mov Disord 5(3):195–202

    PubMed  Google Scholar 

  • Fiumara A, Sciotto A, Barone R, D’Asero G, Munda S, Parano E, Pavone L (1999) Peripheral lymphocyte subsets and other immune aspects in Rett syndrome. Pediatr Neurol 21(3):619–621

    PubMed  Google Scholar 

  • Glaze DG (2005) Neurophysiology of Rett syndrome. J Child Neurol 20(9):740–746

    PubMed  Google Scholar 

  • Glaze DG, Percy AK, Motil KJ, Lane JB, Isaacs JS, Schultz RJ, Barrish JO, Neul JL, O’Brien WE, Smith EO (2009) A study of the treatment of Rett syndrome with folate and betaine. J Child Neurol 24(5):551–556

    PubMed  Google Scholar 

  • Gökcay A, Kitis O, Ekmekci O, Karasoy H, Sener RN (2002) Proton MR spectroscopy in Rett syndrome. Comput Med Imaging Graph 26(4):271–275

    PubMed  Google Scholar 

  • Gospe SM Jr, Gietzen DW, Summers PJ, Lunetta JM, Miller JW, Selhub J, Ellis WG, Clifford AJ (1995) Behavioral and neurochemical changes in folate-deficient mice. Physiol Behav 58(5):935–941

    PubMed  Google Scholar 

  • Guideri F, Acampa M, Blardi P, de Lalla A, Zappella M, Hayek Y (2004) Cardiac dysautonomia and serotonin plasma levels in Rett syndrome. Neuropediatrics 35(1):36–38

    PubMed  Google Scholar 

  • Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27(3):322–326

    PubMed  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315(5815):1143–1147

    PubMed  Google Scholar 

  • Hagberg B, Aicardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14(4):471–479

    PubMed  Google Scholar 

  • Hagberg B, Hanefeld F, Percy A, Skjeldal O (2002) An update on clinically applicable diagnostic criteria in Rett syndrome. Comments to Rett syndrome clinical criteria consensus panel satellite to European paediatric neurology society meeting, Baden Baden, Germany, 11 September 2001. Eur J Paediatr Neurol 6(5):293–297

    Google Scholar 

  • Hanefeld F, Christen HJ, Holzbach U, Kruse B, Frahm J, Hänicke W (1995) Cerebral proton magnetic resonance spectroscopy in Rett syndrome. Neuropediatrics 26(2):126–127

    PubMed  Google Scholar 

  • Harding BN, Tudway AJ, Wilson J (1985) Neuropathological studies in a child showing some features of the Rett syndrome. Brain Dev 7(3):342–344

    PubMed  Google Scholar 

  • Harris JC, Wong DF, Wagner HN Jr, Rett A, Naidu S, Dannals RF, Links JM, Batshaw ML, Moser HW (1986) Positron emission tomographic study of D2 dopamine receptor binding and CSF biogenic amine metabolites in Rett syndrome. Am J Med Genet S1:201–210

    Google Scholar 

  • Hébert JM, Fishell G (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9(9):678–685

    PubMed  Google Scholar 

  • Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40

    PubMed  Google Scholar 

  • Horská A, Naidu S, Herskovits EH, Wang PY, Kaufmann WE, Barker PB (2000) Quantitative 1H MR spectroscopic imaging in early Rett syndrome. Neurology 54(3):715–722

    PubMed  Google Scholar 

  • Hou L, Tang H, Chen Y, Wang L, Zhou X, Rong W, Wang J (2009) Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P. Brain Res 1284:31–40

    PubMed  Google Scholar 

  • Huppke P, Held M, Laccone F, Hanefeld F (2003) The spectrum of phenotypes in females with Rett syndrome. Brain Dev 25(5):346–351

    PubMed  Google Scholar 

  • Ide S, Itoh M, Goto Y (2005) Defect in normal developmental increase of the brain biogenic amine concentrations in the mecp2-null mouse. Neurosci Lett 386(1):14–17

    PubMed  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease and movement disorders: moving forward. Lancet Neurol 7(1):9–11

    PubMed  Google Scholar 

  • Jellinger KA (2003) Rett syndrome—an update. J Neural Transm 110(6):681–701

    PubMed  Google Scholar 

  • Jellinger K, Seitelberger F (1986) Neuropathology of Rett syndrome. Am J Med Genet 25S1:259–270

    Google Scholar 

  • Jellinger K, Armstrong D, Zoghbi HY, Percy AK (1988) Neuropathology of Rett syndrome. Acta Neuropathol 76:142–158

    PubMed  Google Scholar 

  • Johnston MV, Hohmann C, Blue ME (1995) Neurobiology of Rett syndrome. Neuropediatrics 26(2):119–122

    PubMed  Google Scholar 

  • Jourdi H, Hsu YT, Zhou M, Qin Q, Bi X, Baudry M (2009) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29(27):8688–8697

    PubMed  Google Scholar 

  • Julu PO, Kerr AM, Hansen S, Apartopoulos F, Jamal GA (1997) Functional evidence of brain stem immaturity in Rett syndrome. Eur Child Adolesc Psychiatry 6S1:47–54

    Google Scholar 

  • Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N (2008) Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun 377(4):1162–1167

    PubMed  Google Scholar 

  • Kitt CA, Wilcox BJ (1995) Preliminary evidence for neurodegenerative changes in the substantia nigra of Rett syndrome. Neuropediatrics 26(2):114–118

    PubMed  Google Scholar 

  • Kitt CA, Troncoso JC, Price DL, Naidu S, Moser HW (1990) Pathological changes in substantia nigra and basal forebrain neurons in Rett syndrome. Ann Neurol 28(3):S6

    Google Scholar 

  • Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ (2008) Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome—Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci 27(12):3342–3350

    PubMed  Google Scholar 

  • Krägeloh-Mann I, Schroth G, Niemann G, Michaelis R (1989) The Rett syndrome: magnetic resonance imaging and clinical findings in four girls. Brain Dev 11(3):175–178

    PubMed  Google Scholar 

  • Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48(2):303–314

    PubMed  Google Scholar 

  • Ladas T, Chan SA, Ogier M, Smith C, Katz DM (2009) Enhanced dense core granule function and adrenal hypersecretion in a mouse model of Rett syndrome. Eur J Neurosci 30(4):602–610

    PubMed  Google Scholar 

  • Lauterborn JC, Truong GS, Baudry M, Bi X, Lynch G, Gall CM (2003) Chronic elevation of brain-derived neurotrophic factor by ampakines. J Pharmacol Exp Ther 307(1):297–305

    PubMed  Google Scholar 

  • Lekman A, Witt-Engerström I, Gottfries J, Hagberg BA, Percy AK, Svennerholm L (1989) Rett syndrome: biogenic amines and metabolites in postmortem brain. Pediatr Neurol 5(6):357–362

    PubMed  Google Scholar 

  • Lekman A, Witt-Engerström I, Holmberg B, Percy A, Svennerholm L, Hagberg B (1990) CSF and urine biogenic amine metabolites in Rett syndrome. Clin Genet 37(3):173–178

    Article  PubMed  Google Scholar 

  • Leontovich TA, Mukhina JK, Fedorov AA, Belichenko PV (1999) Morphological study of the entorhinal cortex, hippocampal formation, and basal ganglia in Rett syndrome patients. Neurobiol Dis 6(2):77–91

    PubMed  Google Scholar 

  • Leuzzi V, Di Sabato ML, Zollino M, Montanaro ML, Seri S (2004) Early-onset encephalopathy and cortical myoclonus in a boy with MECP2 gene mutation. Neurology 63(10):1968–1970

    PubMed  Google Scholar 

  • Loupe PS, Bredemeier JD, Schroeder SR, Tessel RE (2002) Dopamine re-uptake inhibitor GBR-12909 induction of aberrant behaviors in animal models of dopamine dysfunction. Int J Dev Neurosci 20(3–5):323–333

    PubMed  Google Scholar 

  • Lüdecke B, Dworniczak B, Bartholomé K (1995) A point mutation in the tyrosine hydroxylase gene associated with Segawa’s syndrome. Hum Genet 95(1):123–125

    PubMed  Google Scholar 

  • Luikenhuis S, Giacometti E, Beard CF, Jaenisch R (2004) Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci USA 101(16):6033–6038

    PubMed  Google Scholar 

  • Makedonski K, Abuhatzira L, Kaufman Y, Razin A, Shemer R (2005) MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression. Hum Mol Genet 14(8):1049–1058

    PubMed  Google Scholar 

  • Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14(14):1935–1946

    PubMed  Google Scholar 

  • Marín-Valencia I, Serrano M, Ormazabal A, Pérez-Dueñas B, García-Cazorla A, Campistol J, Artuch R (2008) Biochemical diagnosis of dopaminergic disturbances in paediatric patients: analysis of cerebrospinal fluid homovanillic acid and other biogenic amines. Clin Biochem 41(16–17):1306–1315

    PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302(5646):890–893

    PubMed  Google Scholar 

  • Matarazzo V, Cohen D, Palmer AM, Simpson PJ, Khokhar B, Pan SJ, Ronnett GV (2004) The transcriptional repressor Mecp2 regulates terminal neuronal differentiation. Mol Cell Neurosci 27(1):44–58

    PubMed  Google Scholar 

  • Matsuishi T, Nagamitsu S, Yamashita Y, Murakami Y, Kimura A, Sakai T, Shoji H, Kato H, Percy AK (1997) Decreased cerebrospinal fluid levels of substance P in patients with Rett syndrome. Ann Neurol 42(6):978–981

    PubMed  Google Scholar 

  • McArthur AJ, Budden SS (1998) Sleep dysfunction in Rett syndrome: a trial of exogenous melatonin treatment. Dev Med Child Neurol 40(3):186–192

    PubMed  Google Scholar 

  • Menheniott TR, Woodfine K, Schulz R, Wood AJ, Monk D, Giraud AS, Baldwin HS, Moore GE, Oakey RJ (2008) Genomic imprinting of Dopa decarboxylase in heart and reciprocal allelic expression with neighboring Grb10. Mol Cell Biol 28(1):386–396

    PubMed  Google Scholar 

  • Miyamoto A, Oki J, Takahashi S, Okuno A (1999) Serum melatonin kinetics and long-term melatonin treatment for sleep disorders in Rett syndrome. Brain Dev 21(1):59–62

    PubMed  Google Scholar 

  • Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55(1):78–88

    PubMed  Google Scholar 

  • Muhle R, Trentacoste SV, Rapin I (2004) The genetics of autism. Pediatrics 113(5):e472–e486

    PubMed  Google Scholar 

  • Murakami JW, Courchesne E, Haas RH, Press GA, Yeung-Courchesne R (1992) Cerebellar and cerebral abnormalities in Rett syndrome: a quantitative MR analysis. AJR Am J Roentgenol 159(1):177–183

    PubMed  Google Scholar 

  • Nag N, Moriuchi JM, Peitzman CG, Ward BC, Kolodny NH, Berger-Sweeney JE (2009) Environmental enrichment alters locomotor behaviour and ventricular volume in Mecp2 1lox mice. Behav Brain Res 196(1):44–48

    PubMed  Google Scholar 

  • Naidu S, Wong DF, Kitt C, Wenk G, Moser HW (1992) Positron emission tomography in the Rett syndrome: clinical, biochemical and pathological correlates. Brain Dev 14S:S75–S79

    Google Scholar 

  • Naidu S, Kaufmann WE, Abrams MT, Pearlson GD, Lanham DC, Fredericksen KA, Barker PB, Horska A, Golay X, Mori S, Wong DF, Yablonski M, Moser HW, Johnston MV (2001) Neuroimaging studies in Rett syndrome. Brain Dev 23S1:62–71

    Google Scholar 

  • Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572(1–3):184–188

    PubMed  Google Scholar 

  • Nectoux J, Bahi-Buisson N, Guellec I, Coste J, De Roux N, Rosas H, Tardieu M, Chelly J, Bienvenu T (2008) The p.Val66Met polymorphism in the BDNF gene protects against early seizures in Rett syndrome. Neurology 70(22 Pt 2):2145–2151

    PubMed  Google Scholar 

  • Nielsen JB, Lou HC, Andresen J (1990) Biochemical and clinical effects of tyrosine and tryptophan in the Rett syndrome. Brain Dev 12(1):143–147

    PubMed  Google Scholar 

  • Nielsen JB, Bertelsen A, Lou HC (1992) Low CSF HVA levels in the Rett syndrome: a reflection of restricted synapse formation? Brain Dev 14S:S63–S65

    Google Scholar 

  • Nielsen JB, Toft PB, Reske-Nielsen E, Jensen KE, Christiansen P, Thomsen C, Henriksen O, Lou HC (1993) Cerebral magnetic resonance spectroscopy in Rett syndrome. Failure to detect mitochondrial disorder. Brain Dev 15(2):107–112

    PubMed  Google Scholar 

  • Nihei K, Naitoh H (1990) Cranial computed tomographic and magnetic resonance imaging studies on the Rett syndrome. Brain Dev 12(1):101–105

    PubMed  Google Scholar 

  • Nomura Y, Segawa M, Higurashi M (1985) Rett syndrome—an early catecholamine and indolamine deficient disorder? Brain Dev 7(3):334–341

    PubMed  Google Scholar 

  • Nomura Y, Kimura K, Arai H, Segawa M (1997) Involvement of the autonomic nervous system in the pathophysiology of Rett syndrome. Eur Child Adolesc Psychiatry 6S1:42–46

    Google Scholar 

  • Oehme P, Hecht K, Faulhaber HD, Nieber K, Roske I, Rathsack R (1987) Relationship of substance P to catecholamines, stress, and hypertension. J Cardiovasc Pharmacol 10S12:S109–S111

    Google Scholar 

  • Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM (2007) Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J Neurosci 27(40):10912–10917

    PubMed  Google Scholar 

  • Okado N, Narita M, Narita N (2001) A biogenic amine-synapse mechanism for mental retardation and developmental disabilities. Brain Dev 23S1:S11–S15

    Google Scholar 

  • Ormazabal A, Artuch R, Vilaseca MA, Aracil A, Pineda M (2005) Cerebrospinal fluid concentrations of folate, biogenic amines and pterins in Rett syndrome: treatment with folinic acid. Neuropediatrics 36(6):380–385

    PubMed  Google Scholar 

  • Pan JW, Lane JB, Hetherington H, Percy AK (1999) Rett syndrome: 1H spectroscopic imaging at 4.1 Tesla. J Child Neurol 14(8):524–528

    PubMed  Google Scholar 

  • Paterson DS, Thompson EG, Belliveau RA, Antalffy BA, Trachtenberg FL, Armstrong DD, Kinney HC (2005) Serotonin transporter abnormality in the dorsal motor nucleus of the vagus in Rett syndrome: potential implications for clinical autonomic dysfunction. J Neuropathol Exp Neurol 64(11):1018–1027

    PubMed  Google Scholar 

  • Pelligra R, Norton RD, Wilkinson R, Leon HA, Matson WR (1992) Rett syndrome: stimulation of endogenous biogenic amines. Neuropediatrics 23(3):131–137

    PubMed  Google Scholar 

  • Peña F, Ramirez JM (2004) Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J Neurosci 24(34):7549–7556

    PubMed  Google Scholar 

  • Percy AK, Zoghbi H, Riccardi VM (1985) Rett syndrome: initial experience with an emerging clinical entity. Brain Dev 7(3):300–304

    PubMed  Google Scholar 

  • Perry TL, Dunn HG, Ho HH, Crichton JU (1988) Cerebrospinal fluid values for monoamine metabolites, gamma-aminobutyric acid, and other amino compounds in Rett syndrome. J Pediatr 112(2):234–238

    PubMed  Google Scholar 

  • Piazza CC, Fisher W, Kiesewetter K, Bowman L, Moser H (1990) Aberrant sleep patterns in children with the Rett syndrome. Brain Dev 12(5):488–493

    PubMed  Google Scholar 

  • Plioplys AV, Greaves A, Kazemi K, Silverman E (1994) Lymphocyte function in autism and Rett syndrome. Neuropsychobiology 29(1):12–16

    PubMed  Google Scholar 

  • Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192(1):226–234

    PubMed  Google Scholar 

  • Presti MF, Gibney BC, Lewis MH (2004) Effects of intrastriatal administration of selective dopaminergic ligands on spontaneous stereotypy in mice. Physiol Behav 80(4):433–439

    PubMed  Google Scholar 

  • Ramaekers VT, Hansen SI, Holm J, Opladen T, Senderek J, Häusler M, Heimann G, Fowler B, Maiwald R, Blau N (2003) Reduced folate transport to the CNS in female Rett patients. Neurology 61(4):506–515

    PubMed  Google Scholar 

  • Reiss AL, Faruque F, Naidu S, Abrams M, Beaty T, Bryan RN, Moser H (1993) Neuroanatomy of Rett syndrome: a volumetric imaging study. Ann Neurol 34(2):227–234

    PubMed  Google Scholar 

  • Rett A (1966) On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr 116(37):723–726

    PubMed  Google Scholar 

  • Rett A (1977) Cerebral atrophy associated with hyperammonaemia. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 29. Elsevier, Amsterdam, pp 305–329

    Google Scholar 

  • Ricceri L, De Filippis B, Laviola G (2008) Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav Pharmacol 19(5–6):501–517

    PubMed  Google Scholar 

  • Riederer P, Brücke T, Sofic E, Kienzl E, Schnecker K, Schay V, Kruzik P, Killian W, Rett A (1985) Neurochemical aspects of the Rett syndrome. Brain Dev 7(3):351–360

    PubMed  Google Scholar 

  • Riederer P, Weiser M, Wichart I, Schmidt B, Killian W, Rett A (1986) Preliminary brain autopsy findings in progredient Rett syndrome. Am J Med Genet S1:305–315

    Google Scholar 

  • Riikonen R, Vanhala R (1999) Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and Rett syndrome. Dev Med Child Neurol 41(3):148–152

    PubMed  Google Scholar 

  • Roux JC, Dura E, Moncla A, Mancini J, Villard L (2007) Treatment with desipramine improves breathing and survival in a mouse model for Rett syndrome. Eur J Neurosci 25(7):1915–1922

    PubMed  Google Scholar 

  • Roux JC, Dura E, Villard L (2008) Tyrosine hydroxylase deficit in the chemoafferent and the sympathoadrenergic pathways of the Mecp2 deficient mouse. Neurosci Lett 447(1):82–86

    PubMed  Google Scholar 

  • Sahota A, Leeming R, Blair J, Hagberg B (1985) Tetrahydrobiopterin metabolism in the Rett disease. Brain Dev 7(3):249–250

    PubMed  Google Scholar 

  • Saito Y, Ito M, Ozawa Y, Matsuishi T, Hamano K, Takashima S (2001) Reduced expression of neuropeptides can be related to respiratory disturbances in Rett syndrome. Brain Dev 23S1:S122–S126

    Google Scholar 

  • Sasaki H, Ishihara K, Kato R (2000) Mechanisms of Igf2/H19 imprinting: DNA methylation, chromatin and long-distance gene regulation. J Biochem 127(5):711–715

    PubMed  Google Scholar 

  • Satoi M, Matsuishi T, Yamada S, Yamashita Y, Ohtaki E, Mori K, Riikonen R, Kato H, Percy AK (2000) Decreased cerebrospinal fluid levels of beta-phenylethylamine in patients with Rett syndrome. Ann Neurol 47(6):801–803

    PubMed  Google Scholar 

  • Schanen NC, Dahle EJ, Capozzoli F, Holm VA, Zoghbi HY, Francke U (1997) A new Rett syndrome family consistent with X-linked inheritance expands the X chromosome exclusion map. Am J Hum Genet 61(3):634–641

    PubMed  Google Scholar 

  • Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanabe S, Tourtellotte WW (1987) Human brain dopamine receptors in children and aging adults. Synapse 1(5):399–404

    PubMed  Google Scholar 

  • Segawa M (2001) Pathophysiology of Rett syndrome from the stand point of clinical characteristics. Brain Dev 23S1:S94–S98

    Google Scholar 

  • Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM (1994) Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol 342(3):321–334

    PubMed  Google Scholar 

  • Shadrina MI, Dolotov OV, Grivennikov IA, Slominsky PA, Andreeva LA, Inozemtseva LS, Limborska SA, Myasoedov NF (2001) Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analog. Neurosci Lett 308:115–118

    PubMed  Google Scholar 

  • Shahbazian MD, Sun Y, Zoghbi HY (2002) Balanced X chromosome inactivation patterns in the Rett syndrome brain. Am J Med Genet 111(2):164–168

    PubMed  Google Scholar 

  • Sirianni N, Naidu S, Pereira J, Pillotto RF, Hoffman EP (1998) Rett syndrome: confirmation of X-linked dominant inheritance, and localization of the gene to Xq28. Am J Hum Genet 63(5):1552–1558

    PubMed  Google Scholar 

  • Solaas KM, Skjeldal O, Gardner ML, Kase FB, Reichelt KL (2002) Urinary peptides in Rett syndrome. Autism 6(3):315–328

    PubMed  Google Scholar 

  • Suzuki H (1991) Bromocriptine improves circadian rhythm in Rett syndrome. No To Hattatsu 23(2):213–214

    PubMed  Google Scholar 

  • Temudo T, Rios M, Prior C, Carrilho I, Santos M, Maciel P, Sequeiros J, Fonseca M, Monteiro J, Cabral P, Vieira JP, Ormazabal A, Artuch R (2009) Evaluation of CSF neurotransmitters and folate in 25 patients with Rett disorder and effects of treatment. Brain Dev 31(1):46–51

    PubMed  Google Scholar 

  • Tsai SJ (2007) Semax, an analogue of adrenocorticotropin (4–10), is a potential agent for the treatment of attention-deficit hyperactivity disorder and Rett syndrome. Med Hypotheses 68(5):1144–1146

    PubMed  Google Scholar 

  • Urdinguio RG, Lopez-Serra L, Lopez-Nieva P, Alaminos M, Diaz-Uriarte R, Fernandez AF, Esteller M (2008) Mecp2-null mice provide new neuronal targets for Rett syndrome. PLoS One 3(11):e3669

    PubMed  Google Scholar 

  • Verbeek MM, Blom AM, Wevers RA, Lagerwerf AJ, van de Geer J, Willemsen MA (2008) Technical and biochemical factors affecting cerebrospinal fluid 5-MTHF, biopterin and neopterin concentrations. Mol Genet Metab 95(3):127–132

    PubMed  Google Scholar 

  • Viemari JC, Roux JC, Tryba AK, Saywell V, Burnet H, Peña F, Zanella S, Bévengut M, Barthelemy-Requin M, Herzing LB, Moncla A, Mancini J, Ramirez JM, Villard L, Hilaire G (2005) Mecp2 deficiency disrupts norepinephrine and respiratory systems in mice. J Neurosci 25(50):11521–11530

    PubMed  Google Scholar 

  • Voituron N, Zanella S, Menuet C, Dutschmann M, Hilaire G (2009) Early breathing defects after moderate hypoxia or hypercapnia in a mouse model of Rett syndrome. Respir Physiol Neurobiol 168:109–118

    PubMed  Google Scholar 

  • Wang H, Chan SA, Ogier M, Hellard D, Wang Q, Smith C, Katz DM (2006) Dysregulation of brain-derived neurotrophic factor expression and neurosecretory function in Mecp2 null mice. J Neurosci 26(42):10911–10915

    PubMed  Google Scholar 

  • Wenk GL (1995) Alterations in dopaminergic function in Rett syndrome. Neuropediatrics 26(2):123–125

    PubMed  Google Scholar 

  • Wenk GL (1996) Rett syndrome: evidence for normal dopaminergic function. Neuropediatrics 27(5):256–259

    PubMed  Google Scholar 

  • Wenk GL, Naidu S, Casanova MF, Kitt CA, Moser H (1991) Altered neurochemical markers in Rett’s syndrome. Neurology 41(11):1753–1756

    PubMed  Google Scholar 

  • Wilken B, Lalley P, Bischoff AM, Christen HJ, Behnke J, Hanefeld F, Richter DW (1997) Treatment of apneustic respiratory disturbance with a serotonin-receptor agonist. J Pediatr 130(1):89–94

    PubMed  Google Scholar 

  • Williamson SL, Christodoulou J (2006) Rett syndrome: new clinical and molecular insights. Eur J Hum Genet 14(8):896–903

    PubMed  Google Scholar 

  • Wong DF, Harris JC, Naidu S, Yokoi F, Marenco S, Dannals RF, Ravert HT, Yaster M, Evans A, Rousset O, Bryan RN, Gjedde A, Kuhar MJ, Breese GR (1996) Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proc Natl Acad Sci USA 93(11):5539–5543

    PubMed  Google Scholar 

  • Wong DF, Ricaurte G, Gründer G, Rothman R, Naidu S, Singer H, Harris J, Yokoi F, Villemagne V, Szymanski S, Gjedde A, Kuhar M (1997) Dopamine transporter changes in neuropsychiatric disorders. Adv Pharmacol 42:219–223

    Google Scholar 

  • Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, Thatcher KN, Farnham PJ, Lasalle JM (2007) Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci USA 104(49):19416–19421

    PubMed  Google Scholar 

  • Zanella S, Mebarek S, Lajard AM, Picard N, Dutschmann M, Hilaire G (2008) Oral treatment with desipramine improves breathing and life span in Rett syndrome mouse model. Respir Physiol Neurobiol 160(1):116–121

    PubMed  Google Scholar 

  • Zappella M, Genazzani A, Facchinetti F, Hayek G (1990) Bromocriptine in the Rett syndrome. Brain Dev 12(2):221–225

    PubMed  Google Scholar 

  • Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, Eisner M, Crippa PR, Ito S, Wakamatsu K, Bush WD, Ward WC, Simon JD, Zucca FA (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci USA 105(45):17567–17572

    PubMed  Google Scholar 

  • Zhou Z, Hong EJ, Cohen S, Zhao WN, Ho HY, Schmidt L, Chen WG, Lin Y, Savner E, Griffith EC, Hu L, Steen JA, Weitz CJ, Greenberg ME (2006) Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron 52(2):255–269

    PubMed  Google Scholar 

  • Zoghbi HY, Percy AK, Glaze DG, Butler IJ, Riccardi VM (1985) Reduction of biogenic amine levels in the Rett syndrome. N Engl J Med 313(15):921–924

    Article  PubMed  Google Scholar 

  • Zoghbi HY, Milstien S, Butler IJ, Smith EO, Kaufman S, Glaze DG, Percy AK (1989) Cerebrospinal fluid biogenic amines and biopterin in Rett syndrome. Ann Neurol 25(1):56–60

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the children and adults affected by Rett syndrome. We acknowledge support from the EuroRETT E-RARE network, Association Française du Syndrome de Rett (AFSR), the Agence Nationale de la Recherche (ANR), the Fondation Jérôme Lejeune and Inserm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Villard.

Additional information

Edited by Pierre Roubertoux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, JC., Villard, L. Biogenic Amines in Rett Syndrome: The Usual Suspects. Behav Genet 40, 59–75 (2010). https://doi.org/10.1007/s10519-009-9303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-009-9303-y

Keywords

Navigation