Skip to main content
Log in

Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component

Brain Topography Aims and scope Submit manuscript

Abstract

The C1 component of the VEP is considered to index initial afference of retinotopic regions of human visual cortex (V1 and V2). C1 onsets over central parieto–occipital scalp between 45 and 60 ms, peaks between 70 and 100 ms, and then resolves into the following P1 component. By exploiting isoluminant and low-contrast luminance stimuli, we assessed the relative contributions of the Magnocellular (M) and Parvocellular (P) pathways to generation of C1. C1 was maximal at 88 ms in a 100% luminance contrast condition (which stimulates both P and M pathways) and at 115 ms in an isoluminant chromatic condition (which isolates contributions of the P pathway). However, in a 4% luminance contrast condition (which isolates the M pathway), where the stimuli were still clearly perceived, C1 was completely absent. Absence of C1 in this low contrast condition is unlikely to be attributable to lack of stimulus energy since a robust P1–N1 complex was evoked. These data therefore imply that C1 may be primarily parvocellular in origin. The data do not, however, rule out some contribution from the M system at higher contrast levels. Nonetheless, that the amplitude of C1 to P-isolating isoluminant chromatic stimuli is equivalent to that evoked by 100% contrast stimuli suggests that even at high contrast levels, the P system is the largest contributor. These data are related to intracranial recordings in macaque monkeys that have also suggested that the initial current sink in layer IV may not propagate effectively to the scalp surface when M-biased stimuli are used. We also discuss how this finding has implications for a long tradition of attention research that has␣used C1 as a metric of initial V1 afference in humans. C1 has been repeatedly interrogated for potential selective attentional modulations, particularly in spatial attentional designs, under the premise that modulation of this component, or lack thereof, would be evidence for or against selection at the initial inputs to visual cortex. Given the findings here, we would urge that in interpreting C1 effects, a consideration of the dominant cellular contributions will be necessary. For example, it is plausible that spatial attention mechanisms could operate primarily through the M system and that as such C1 may not always represent an adequate dependent measure in such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Broadbent DE (1958) Perception and communication. Pergamon, London

    Google Scholar 

  • Butler PD, Schechter I, Zemon V, Schwartz SG, Greenstein VC, Gordon J, Schroeder CE, Javitt DC (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158(7):1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130(Pt 2):417–430

    Article  PubMed  Google Scholar 

  • Calkins DJ, Sterling P (1999) Evidence that circuits for spatial and color vision segregate at the first retinal synapse. Neuron 24:313–321

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Callaway EM (2003) Parallel colour-opponent pathways to primary visual cortex. Nature 426:668–671

    Article  PubMed  CAS  Google Scholar 

  • Clark VP, Hillyard SA (1996) Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 8:387–402

    Google Scholar 

  • Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analyses. Hum Brain Mapp 2:170–187

    Article  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18(18):7426–7435

    PubMed  CAS  Google Scholar 

  • Dale CL, Simpson GV, Foxe JJ, Luks TL, Worden MS (2008) ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention. Exp Brain Res 188:45–62

    Google Scholar 

  • Derrington AM, Lennie P (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J Physiol 357:219–240

    PubMed  CAS  Google Scholar 

  • Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90

    Article  PubMed  CAS  Google Scholar 

  • Di Russo F, Martínez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15:95–111

    Article  PubMed  Google Scholar 

  • Di Russo F, Martinez A, Hillyard SA (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13(5):486–499

    Article  PubMed  Google Scholar 

  • Driver J (2001) A selective review of selective attention research from the past century. Br J Psychol 92(I):53–78

    Google Scholar 

  • Driver J, Tipper SP (1989) On the nonselectivity of “selective” seeing: contrasts between interference and priming in selective attention. JEP: HPP 15:304–314

    Google Scholar 

  • Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP (2001) Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis 15(1):99–111

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, Schroeder CE (2005) The case for feedforward multisensory convergence during early cortical processing. NeuroReport 16:419–423

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans: a framework for defining “early” visual processing. Exp Brain Res 142:39–150

    Article  Google Scholar 

  • Foxe JJ, Simpson GV (2005) Biasing the brain’s attentional set. II. Effects of selective intersensory attentional deployments on subsequent sensory processing. Exp Brain Res 166:393–401

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto–occipital 10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport 9:3929–3933

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, Doniger GM, Javitt DC (2001) Visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. NeuroReport 12(17):3815–3820

    Article  PubMed  CAS  Google Scholar 

  • Foxe JJ, McCourt ME, Javitt DC (2003) Right hemisphere control of visuo-spatial attention: ‹Line-bisection’ judgments evaluated with high-density electrical mapping and source-analysis. NeuroImage 19:710–726

    Article  PubMed  Google Scholar 

  • Foxe JJ, Murray MM, Javitt DC (2005a) Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex 15:1914–1927

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV, Ahlfors SP, Saron CD (2005b) Biasing the brain’s attentional set. I. Cue driven deployments of intersensory selective attention. Exp Brain Res 166:370–392

    Article  PubMed  Google Scholar 

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122(Pt 6):1093–1106

    Article  PubMed  Google Scholar 

  • Givre SJ, Schroeder CE, Arezzo JC (1994) Contribution of extrastriate area V4 to the surface-recorded flash VEP in the awake macaque. Vision Res 34(4):415–428

    Article  PubMed  CAS  Google Scholar 

  • Givre SJ, Arezzo JC, Schroeder CE (1995) Effects of wavelength on the timing and laminar distribution of illuminance-evoked activity in macaque V1. Vis Neurosci 12(2):229–239

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gonzalez CM, Clark VP, Fan S, Luck SJ, Hillyard SA (1994) Sources of attention-sensitive visual event-related potentials. Brain Topogr 7:41–51

    Article  PubMed  CAS  Google Scholar 

  • Guthrie D, Buchwald JS (1991) Significance testing of difference potentials. Psychophysiology 28(2):240–244

    Article  CAS  Google Scholar 

  • Hall SD, Holliday IE, Hillebrand A, Furlong PL, Singh KD, Barnes GR (2005) Distinct contrast response functions in striate and extra-striate regions of visual cortex revealed with magnetoencephalography (MEG). Clin Neurophysiol 116:1716–1722

    Article  PubMed  Google Scholar 

  • Heilman KM, Van Den Abell T (1980) Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–330

    CAS  Google Scholar 

  • Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci 353:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Livingstone MS (1990) Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. J Neurosci 10(7):2223–2237

    PubMed  CAS  Google Scholar 

  • Ikeda H, Nishijo H, Miyamoto K, Tamura R, Endo S, Ono T (1998) Generators of visual evoked potentials investigated by dipole tracing in the human occipital cortex. Neuroscience 84:723–739

    Article  CAS  Google Scholar 

  • Jeffreys DA, Axford JG (1972) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21

    CAS  Google Scholar 

  • Kaiser PK (1979) Spectral sensitivity function measured by a rapid scan flicker photometric procedure. Invest Ophthalmol Vis Sci 18:1264–1272

    PubMed  CAS  Google Scholar 

  • Kaplan E (1991) The receptive field structure of retinal ganglion cells in cat and monkey. In: Cronly-Dillon J (ed) Vision and visual dysfunction, vol 4, AG Leventhal: the neural basis of visual function. CRC Press, Boca Raton, Florida, pp 10–40

  • Kaplan E, Shapley RM (1986) The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc Natl Acad Sci USA 83(8):2755–2757

    Article  PubMed  CAS  Google Scholar 

  • Kelly SP, Gomez-Ramirez M, Foxe JJ (in press) Spatial attention modulates initial afferent activity in human primary visual cortex. Cerebral Cortex Advance Access published on March 4, 2008. doi:10.1093/cercor/bhn022

  • Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35:197–205

    Article  PubMed  Google Scholar 

  • Lachter J, Forster KI, Ruthruff E (2004) Forty-five years after Broadbent (1958): still no identification without attention. Psychol Rev 111(4):880–913

    Article  PubMed  Google Scholar 

  • Lalor EC, Foxe JJ (in press) Biasing responsivity of the magnocellular and parvocellular visual pathways using the Visual Evoked Spread Spectrum Analysis technique (VESPA). Vision Res

  • Lalor EC, Pearlmutter BA, Reilly RB, McDarby G, Foxe JJ (2006) The VESPA: a method for the rapid estimation of a visual evoked potential. Neuroimage 32:1549–1561

    Article  PubMed  Google Scholar 

  • Lalor EC, Kelly SP, Pearlmutter B, Reilly RB, Foxe JJ (2007) Isolating endogenous visuo-spatial attentional effects using the novel Visual Evoked Spread Spectrum Analysis (VESPA) technique. Eur J NeuroSci 26:3536–3542

    Article  PubMed  Google Scholar 

  • Lalor EC, Yeap S, Reilly RB, Pearlmutter BA, Foxe JJ (2008) Dissecting the cellular contributions to early visual sensory processing deficits in schizophrenia using the VESPA evoked response. Schizophr Res 98:256–264

    Article  PubMed  Google Scholar 

  • Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240(4853):740–749

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Rosen GD, Drislane FW, Galaburda AM (1991) Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc Natl Acad Sci 88(18): 7943–7947

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hinrichs H, Scholz M, Mueller-Gaertner HW, Herzog H, Krause BJ, Tellman L, Kemna L, Heinze HJ (2001) Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli. Vision Res 41(10–11):1423–1435

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, DiRusso F, Anllo-Vento L, Sereno MI, Buxton RB, Hillyard SA (2001) Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Res 41(10–11):1437–1457

    Article  PubMed  CAS  Google Scholar 

  • Maunsell JHR, Ghose GM, Assad JA, McAdams CJ, Boudreau CE, Noerager BD (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16:1–14

    Article  PubMed  CAS  Google Scholar 

  • McCourt ME, Foxe JJ (2004) Brightening prospects for “early” cortical coding of perceived luminance. NeuroReport 15:49–56

    Article  PubMed  Google Scholar 

  • Merigan WH (1989) Chromatic and achromatic vision of macaques: role of the P pathway. J Neurosci 9(3):776–783

    PubMed  CAS  Google Scholar 

  • Merigan WH, Maunsell JR (1993) How parallel are the primate visual pathways? Annual Rev Neurosci 16:369–402

    Article  CAS  Google Scholar 

  • Molholm S, Ritter W, Murray MM, Javitt DC, Schroeder CE, Foxe JJ (2002) Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Cogn Brain Res 14:121–134

    Google Scholar 

  • Noesselt T, Hillyard SA, Woldorff MG, Schoenfeld A, Hagner T, Jancke L, Tempelmann C, Hinrichs H, Heinze HJ (2002) Delayed striate cortical activation during spatial attention. Neuron 35(3):575–587

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66(1):75–81

    Article  PubMed  CAS  Google Scholar 

  • Schechter I, Butler PD, Zemon VM, Revheim N, Saperstein AM, Jalbrzikowski M, Pasternak R, Silipo G, Javitt DC (2005) Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia. Clin Neurophysiol 116(9):2204–2215

    Article  PubMed  Google Scholar 

  • Schroeder CE, Tenke CE, Arezzo JC, Vaughan HG Jr (1989) Timing and distribution of flash-evoked activity in the lateral geniculate nucleus of the alert monkey. Brain Res 477(1–2):183–195

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Tenke CE, Givre SJ, Arezzo JC, Vaughan HG Jr (1991) Striate cortical contribution to the surface-recorded pattern-reversal VEP in the alert monkey. Vision Res 31(7–8): 1143–1157

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Javitt DC, Steinschneider M, Mehta AD, Givre SJ, Vaughan HG Jr, Arezzo JC (1997) N-methyl-D-aspartate enhancement of phasic responses in primate neocortex. Exp Brain Res 114(2):271–278

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592

    Article  PubMed  CAS  Google Scholar 

  • Schroeder CE, Mehta AD, Foxe JJ (2001) Determinants and mechanisms of attentional modulation of neural processing. Front Biosci 6:D672–D684

    Article  PubMed  CAS  Google Scholar 

  • Schwartz BD, Tomlin HR, Evans WJ, Ross KV (2001) Neurophysiologic mechanisms of attention: a selective review of early information processing in schizophrenics. Front Biosci 6:D120–D134

    Article  PubMed  CAS  Google Scholar 

  • Shapley R, Kaplan E, Soodak R (1981) Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 292(5823):543–545

    Article  PubMed  CAS  Google Scholar 

  • Simpson GV, Pfleiger ME, Foxe JJ, Ahlfors SP, Vaughan HG Jr, Hrabe J, Ilmoniemi RJ, Lantos G (1995a) Dynamic neuroimaging of brain function. J Clin Neurophysiol 12(5):1–18

    Google Scholar 

  • Simpson GV, Foxe JJ, Vaughan HG Jr, Mehta AD, Schroeder CE (1995b) Integration of electrophysiological source analyses, MRI and animal models in the study of visual processing and attention. Electroencephalogr Clin Neurophysiol Suppl 44:76–92

    PubMed  CAS  Google Scholar 

  • Tenke CE, Schroeder CE, Arezzo JC, Vaughan HG Jr (1993) Interpretation of high-resolution current source density profiles: a simulation of sublaminar contributions to the visual evoked potential. Exp Brain Res 94(2):183–192

    Article  PubMed  CAS  Google Scholar 

  • Tootell RB, Switkes E, Silverman MS, Hamilton SL (1988a) Functional anatomy of macaque striate cortex. II. Retinotopic organization. J Neurosci 8:1531–1568

    CAS  Google Scholar 

  • Tootell RB, Hamilton SL, Switkes E (1988b) Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. J␣Neurosci 8(5):1594–609

    Google Scholar 

  • Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15(4):3215–3230

    PubMed  CAS  Google Scholar 

  • Tootell RB, Hadjikhani NK, Vanduffel W, Liu AK, Mendola JD, Sereno MI, Dale AM (1998) Functional analysis of primary visual cortex (V1) in humans. Proc Natl Acad Sci USA 95(3): 811–817

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–585

  • Vallar G, Perani D (1986) The anatomy of unilateral neglect after right-hemisphere stroke lesions: a clinical/CT-scan correlation study in man. Neuropsychologia 24:609–622

    Article  PubMed  CAS  Google Scholar 

  • Vallar G, Perani D (1987) The anatomy of spatial neglect in humans. In Jennerod (ed) Neurophysiological and neuropsychological aspects of spatial neglect. North Holland, Amsterdam, pp 235–258

  • Van Essen DC, Maunsell JHR (1983) Hierarchical organization and functional streams in the visual cortex. Trends Neurosci 6:370–375

    Article  Google Scholar 

  • Yeap S, Kelly SP, Sehatpour P, Magno E, Javitt DC, Garavan H, Thakore JH, Foxe JJ (2006) Early visual sensory deficits as endophenotypes for Schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63:1180–1188

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Vance Zemon, Dr.␣Barbara Blakeslee and Dr. Simon Kelly for very helpful discussions. We would like to especially thank Ms. Jeannette Mahoney, Ms. Marina Shpaner and Ms. Beth Higgins for their expert data collection. We would also like to acknowledge the passing of our friend and colleague, Brian “Wren” Pasieka, who is sorely missed. This work was supported by an NIMH RO1 grant to JJF (MH65350) and MEM received support from NCRR grant P20 RR020151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Foxe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foxe, J.J., Strugstad, E.C., Sehatpour, P. et al. Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High-Density Electrical Mapping of the “C1” Component. Brain Topogr 21, 11–21 (2008). https://doi.org/10.1007/s10548-008-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-008-0063-4

Keywords

Navigation