Skip to main content

Advertisement

Log in

Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The role of estrogen receptor beta (ERβ) in breast cancer is unclear. ERβ is considered to have a protective role in breast cancer development based on findings demonstrating that ERβ expression inhibits ERα-mediated proliferation of breast cancer cells. We previously demonstrated that ERβ causes a ligand independent G2 cell cycle arrest in MCF-7 cells. To study the mechanisms of the ERβ-mediated G2 cell cycle arrest, we investigated its effects on the regulatory pathways responsible for the G2/M phase transition. We found that ERβ inhibits CDK1 activity, which is the critical determinant of the G2/M progression. CDK1 activity is modulated by both stimulatory and inhibitory factors. Cyclin B1 is the major activator of CDK1. ERβ inhibited the cell cycle-dependent stimulation of cyclin B1 mRNA and protein. GADD45A and BTG2 are two major inhibitors of CDK1, which have been implicated in breast tumor formation. Based on these findings, we explored if the expression pattern of GADD45A and BTG2 is affected by ERβ. We found that ERβ stimulates GADD45A and BTG2 mRNA levels. The induction of these two genes is caused by ERβ binding directly to these genes and recruiting c-jun and NCOA2. Our findings demonstrated that unliganded ERβ causes a G2 cell cycle arrest by inactivating CDK1 through the repression of cyclin B1 and stimulation of GADD45A and BTG2 expression. These results provide evidence that drugs that stimulate the production of unliganded ERβ may be effective new therapies to prevent breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sommer S, Fuqua SA (2001) Estrogen receptor and breast cancer. Semin Cancer Biol 11(5):339–352

    Article  PubMed  CAS  Google Scholar 

  2. Speirs V, Walker R (2007) New perspectives into the biological and clinical relevance of oestrogen receptors in the human breast. J Pathol 211:499–506

    Article  PubMed  CAS  Google Scholar 

  3. Patel RR, Sharma CG, Jordan VC (2007) Optimizing the antihormonal treatment and prevention of breast cancer. Breast Cancer (Tokyo, Japan) 14(2):113–122

    Google Scholar 

  4. Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, Leitman DC (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64(1):423–428

    Article  PubMed  CAS  Google Scholar 

  5. Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci USA 101(6):1566–1571

    Article  PubMed  Google Scholar 

  6. Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142(9):4120–4130

    Article  PubMed  CAS  Google Scholar 

  7. Crandall DL, Busler DE, Novak TJ, Weber RV, Kral JG (1998) Identification of estrogen receptor beta RNA in human breast and abdominal subcutaneous adipose tissue. Biochem Biophys Res Commun 248(3):523–526

    Article  PubMed  CAS  Google Scholar 

  8. Vladusic EA, Hornby AE, Guerra-Vladusic FK, Lupu R (1998) Expression of estrogen receptor beta messenger RNA variant in breast cancer. Cancer Res 58(2):210–214

    PubMed  CAS  Google Scholar 

  9. Fuqua SA, Schiff R, Parra I, Friedrichs WE, Su JL, McKee DD, Slentz-Kesler K, Moore LB, Willson TM, Moore JT (1999) Expression of wild-type estrogen receptor beta and variant isoforms in human breast cancer. Cancer Res 59(21):5425–5428

    PubMed  CAS  Google Scholar 

  10. Carder PJ, Murphy CE, Dervan P, Kennedy M, McCann A, Saunders PT, Shaaban AM, Foster CS, Witton CJ, Bartlett JM et al (2005) A multi-centre investigation towards reaching a consensus on the immunohistochemical detection of ERbeta in archival formalin-fixed paraffin embedded human breast tissue. Breast Cancer Res Treat 92(3):287–293

    Article  PubMed  Google Scholar 

  11. Zhao C, Lam EW, Sunters A, Enmark E, De Bella MT, Coombes RC, Gustafsson JA, Dahlman-Wright K (2003) Expression of estrogen receptor beta isoforms in normal breast epithelial cells and breast cancer: regulation by methylation. Oncogene 22(48):7600–7606

    Article  PubMed  CAS  Google Scholar 

  12. Rody A, Holtrich U, Solbach C, Kourtis K, von Minckwitz G, Engels K, Kissler S, Gatje R, Karn T, Kaufmann M (2005) Methylation of estrogen receptor beta promoter correlates with loss of ER-beta expression in mammary carcinoma and is an early indication marker in premalignant lesions. Endocr Relat Cancer 12(4):903–916

    Article  PubMed  CAS  Google Scholar 

  13. Lin CY, Strom A, Li Kong S, Kietz S, Thomsen JS, Tee JB, Vega VB, Miller LD, Smeds J, Smeds J, Bergh J et al (2007) Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res 9(2):R25

    Article  PubMed  Google Scholar 

  14. Honma N, Horii R, Iwase T, Saji S, Younes M, Takubo K, Matsuura M, Ito Y, Akiyama F, Sakamoto G (2008) Clinical importance of estrogen receptor-beta evaluation in breast cancer patients treated with adjuvant tamoxifen therapy. J Clin Oncol 26(22):3727–3734

    Article  PubMed  Google Scholar 

  15. Nakopoulou L, Lazaris AC, Panayotopoulou EG, Giannopoulou I, Givalos N, Markaki S, Keramopoulos A (2004) The favourable prognostic value of oestrogen receptor beta immunohistochemical expression in breast cancer. J Clin Pathol 57(5):523–528

    Article  PubMed  CAS  Google Scholar 

  16. Satyanarayana A, Kaldis P (2009) Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 28(33):2925–2939

    Article  PubMed  CAS  Google Scholar 

  17. Riabowol K, Draetta G, Brizuela L, Vandre D, Beach D (1989) The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57(3):393–401

    Article  PubMed  CAS  Google Scholar 

  18. Fornace AJ Jr, Nebert DW, Hollander MC, Luethy JD, Papathanasiou M, Fargnoli J, Holbrook NJ (1989) Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents. Mol Cell Biol 9(10):4196–4203

    PubMed  CAS  Google Scholar 

  19. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclin B1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192(3):327–338

    Article  PubMed  CAS  Google Scholar 

  20. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7(A):268–276

    PubMed  CAS  Google Scholar 

  21. Winkler GS (2009) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222(1):66–72

    Article  Google Scholar 

  22. Hwang A, Maity A, McKenna WG, Muschel RJ (1995) Cell cycle-dependent regulation of the cyclin B1 promoter. J Biol Chem 270(47):28419–28424

    Article  PubMed  CAS  Google Scholar 

  23. Hwang A, McKenna WG, Muschel RJ (1998) Cell cycle-dependent usage of transcriptional start sites. A novel mechanism for regulation of cyclin B1. J Biol Chem 273(47):31505–31509

    Article  PubMed  CAS  Google Scholar 

  24. Jin S, Antinore MJ, Lung FD, Dong X, Zhao H, Fan F, Colchagie AB, Blanck P, Roller PP, Fornace AJ Jr et al (2000) The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J Biol Chem 275(22):16602–16608

    Article  PubMed  CAS  Google Scholar 

  25. Ryu MS, Lee MS, Hong JW, Hahn TR, Moon E, Lim IK (2004) TIS21/BTG2/PC3 is expressed through PKC-delta pathway and inhibits binding of cyclin B1-Cdc2 and its activity, independent of p53 expression. Exp Cell Res 299(1):159–170

    Article  PubMed  CAS  Google Scholar 

  26. Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, Berthet C, Moyret-Lalle C, Savatier P, Pain B et al (1996) Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet 14(4):482–486

    Article  PubMed  CAS  Google Scholar 

  27. Kawakubo H, Carey JL, Brachtel E, Gupta V, Green JE, Walden PD, Maheswaran S (2004) Expression of the NF-kappaB-responsive gene BTG2 is aberrantly regulated in breast cancer. Oncogene 23(50):8310–8319

    Article  PubMed  CAS  Google Scholar 

  28. Cvoro A, Tzagarakis-Foster C, Tatomer D, Paruthiyil S, Fox MS, Leitman DC (2006) Distinct roles of unliganded and liganded estrogen receptors in transcriptional repression. Mol Cell 21(4):555–564

    Article  PubMed  CAS  Google Scholar 

  29. Karmakar S, Foster EA, Smith CL (2009) Estradiol downregulation of the tumor suppressor gene BTG2 requires estrogen receptor-alpha and the REA corepressor. Int J Cancer 124(8):1841–1851

    Article  PubMed  CAS  Google Scholar 

  30. Jackson JG, Pereira-Smith OM (2006) p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. Cancer Res 66(17):8356–8360

    Article  PubMed  CAS  Google Scholar 

  31. Zhan Q, Antinore MJ, Wang XW, Carrier F, Smith ML, Harris CC, Fornace AJ Jr (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18(18):2892–2900

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell PJ, Tjian R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245(4916):371–378

    Article  PubMed  CAS  Google Scholar 

  33. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15(14):3667–3675

    PubMed  CAS  Google Scholar 

  34. Hong H, Kohli K, Trivedi A, Johnson DL, Stallcup MR (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA 93(10):4948–4952

    Article  PubMed  CAS  Google Scholar 

  35. Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80(2):225–236

    Article  PubMed  CAS  Google Scholar 

  36. Elledge SJ, Winston J, Harper JW (1996) A question of balance: the role of cyclin-kinase inhibitors in development and tumorigenesis. Trends Cell Biol 6(10):388–392

    Article  PubMed  CAS  Google Scholar 

  37. Wang W, Huper G, Guo Y, Murphy SK, Olson JA Jr, Marks JR (2005) Analysis of methylation-sensitive transcriptome identifies GADD45a as a frequently methylated gene in breast cancer. Oncogene 24(16):2705–2714

    Article  PubMed  CAS  Google Scholar 

  38. Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, Webb P (2000) Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol 74(5):311–317

    Article  PubMed  CAS  Google Scholar 

  39. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF et al (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xiaoyue Zhao for assistance with statistical analysis and Jan-Åke Gustafsson for providing plasmids. This work was supported by a grant from the American Cancer Society to D.C.L.

Conflict of interest

A.C. has nothing to declare. S.P., M.T., I.C., and E.S. are employees of Bionovo, Inc. D.C.L. is on the Scientific Advisory Board and has received financial support for research from Bionovo, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale C. Leitman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paruthiyil, S., Cvoro, A., Tagliaferri, M. et al. Estrogen receptor β causes a G2 cell cycle arrest by inhibiting CDK1 activity through the regulation of cyclin B1, GADD45A, and BTG2. Breast Cancer Res Treat 129, 777–784 (2011). https://doi.org/10.1007/s10549-010-1273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1273-5

Keywords

Navigation