Skip to main content

Advertisement

Log in

Past, Present and Future of Human Chromaffin Cells: Role in Physiology and Therapeutics

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Chromaffin cells are neuroendocrine cells mainly found in the medulla of the adrenal gland. Most existing knowledge of these cells has been the outcome of extensive research performed in animals, mainly in the cow, cat, mouse and rat. However, some insight into the physiology of this neuroendocrine cell in humans has been gained. This review summarizes the main findings reported in human chromaffin cells under physiological or disease conditions and discusses the clinical implications of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackrell BA (2000) Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Lett 466:1–5

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Axel R (1986) A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell 47:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Anderson DJ, Carnahan JF, Michelsohn A, Patterson PH (1991) Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J Neurosci 11:3507–3519

    CAS  PubMed  Google Scholar 

  • Anneren G, Meurling S, Olsen L (1991) Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), an autosomal recessive disorder: clinical reports and review of the literature. Am J Med Genet 41:251–254

    Article  CAS  PubMed  Google Scholar 

  • Anney RJ, Olsson CA, Lotfi-Miri M, Patton GC, Williamson R (2004) Nicotine dependence in a prospective population-based study of adolescents: the protective role of a functional tyrosine hydroxylase polymorphism. Pharmacogenetics. 14:73–81

    Article  CAS  PubMed  Google Scholar 

  • Arjona V, Minguez-Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo-Aral JJ, Pardal R, Mendez-Ferrer S, Martin JM, Perez M, Katati MJ, Valencia E, Garcia T, Lopez-Barneo J (2003) Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery 53:321–328 (discussion 328–330)

    Article  PubMed  Google Scholar 

  • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, Skoldberg F, Husebye ES, Eng C, Maher ER (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69:49–54

    Article  CAS  PubMed  Google Scholar 

  • Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, Seiger A, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trials. J Neurosurg 62:169–173

    Article  CAS  PubMed  Google Scholar 

  • Barbeau P, Litaker MS, Jackson RW, Treiber FA (2003) A tyrosine hydroxylase microsatellite and hemodynamic response to stress in a multi-ethnic sample of youth. Ethn Dis 13:186–192

    PubMed  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, van der Mey A, Taschner PE, Rubinstein WS, Myers EN, Richard C W 3rd, Cornelisse CJ, Devilee P, Devlin B (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  CAS  PubMed  Google Scholar 

  • Biales B, Dichter M, Tischler A (1976) Electrical excitability of cultured adrenal chromaffin cells. J Physiol 262:743–753

    CAS  PubMed  Google Scholar 

  • Bloom SR, Christofides ND, Delamarter J, Buell G, Kawashima E, Polak JM (1983) Diarrhoea in vipoma patients associated with cosecretion of a second active peptide (peptide histidine isoleucine) explained by single coding gene. Lancet 2:1163–1165

    Article  CAS  PubMed  Google Scholar 

  • Bohn MC, Cupit L, Marciano F, Gash DM (1987) Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science 237:913–916

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR (2005) Restoring adrenomedullary function. Horm Metab Res 37:461–462

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, González-Hernández JA, Ehrhart-Bornstein M, Adler G, Scherbaum WA (1994) Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J Clin Endocrinol Metab 78:225–232

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, Breidert M, Ehrhart-Bornstein M, Kloos B, Scherbaum WA (1995) Plasma catecholamines in patients with Addison’s disease. Clin Endocrinol (Oxf) 42:215–218

    Article  CAS  Google Scholar 

  • Bravo EL, Gifford R W Jr (1984) Current concepts pheochromocytoma: diagnosis, localization and management. N Engl J Med 311:1298–1303

    Article  CAS  PubMed  Google Scholar 

  • Bresjanac M, Sagen J, Seigel G, Paino CL, Kordower J, Gash DM (1997) Xenogeneic adrenal medulla graft rejection rather than survival leads to increased rat striatal tyrosine hydroxylase immunoreactivity. J Neuropathol Exp Neurol 56:490–498

    Article  CAS  PubMed  Google Scholar 

  • Bryant J, Farmer J, Kessler LJ, Townsend RR, Nathanson KL (2003) Pheochromocytoma: the expanding genetic differential diagnosis. J Natl Cancer Inst 95:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Carney JA (1997) Adrenal gland. In: Sternberg SS (ed) Histology for pathologists. Lippincott-Raven, Philadelphia, pp 1107–1131

    Google Scholar 

  • Cavadas C, Silva AP, Mosimann F, Cotrim MD, Ribeiro CA, Brunner HR, Grouzmann E (2001) NPY regulates catecholamine secretion from human adrenal chromaffin cells. J Clin Endocrinol Metab 86:5956–5963

    Article  CAS  PubMed  Google Scholar 

  • Cavadas C, Grand D, Mosimann F, Cotrim MD, Fontes Ribeiro CA, Brunner HR, Grouzmann E (2003) Angiotensin II mediates catecholamine and neuropeptide Y secretion in human adrenal chromaffin cells through the AT1 receptor. Regul Pept 111:61–65

    Article  CAS  PubMed  Google Scholar 

  • Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M (2009) Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 27:2602–2613

    Article  CAS  PubMed  Google Scholar 

  • Crowder RE (1957) The development of the adrenal gland in man, with special reference to origin and ultimate location of cell types and evidence in favour of the ‘cell migration’ theory. Contributions to embryology. Carnegie Institution of Washington Publication, 611, pp 193–210

  • Cryer PE (1980) Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 303:436–444

    Article  CAS  PubMed  Google Scholar 

  • Cubells JF, Zabetian CP (2004) Human genetics of plasma dopamine beta-hydroxylase activity: Applications to research in psychiatry and neurology. Psychopharmacology (Berl) 174:463–476

    Article  CAS  Google Scholar 

  • Cui J, Zhou X, Chazaro I, DeStefano AL, Manolis AJ, Baldwin CT, Gavras H (2003) Association of polymorphisms in the promoter region of the PNMT gene with essential hypertension in African Americans but not in whites. Am J Hypertens 16:859–863

    Article  CAS  PubMed  Google Scholar 

  • Dahia PL (2006) Evolving concepts in pheochromocytoma and paraganglioma. Curr Opin Oncol 18:1–8

    Article  PubMed  Google Scholar 

  • Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, Hodin R, Heitritter S, Moore F, Dluhy R, Sosa JA, Ocal IT, Benn DE, Marsh DJ, Robinson BG, Schneider K, Garber J, Arum SM, Korbonits M, Grossman A, Pigny P, Toledo SP, Nose V, Li C, Stiles CD (2005) A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1:72–80

    Article  CAS  PubMed  Google Scholar 

  • Date I (1996) Parkinson’s disease, trophic factors, and adrenal medullary chromaffin cell grafting: basic and clinical studies. Brain Res Bull 40:1–19

    Article  CAS  PubMed  Google Scholar 

  • Ding YJ, Zhang WC, Jiao SS, Cao JK, Meng JM, Ding MC, Sun JB, Zhang ZM, Shi MT (1988) Functional improvement by transplanting auto-adrenal medulla grafts into caudate in patients with Parkinsonism. Chin Med J (Engl) 101:631–636

    CAS  Google Scholar 

  • Drisdel RC, Green WN (2000) Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. J Neurosci 20:133–139

    CAS  PubMed  Google Scholar 

  • Drucker-Colín R, Verdugo-Díaz L (2004) Cell transplantation for Parkinson’s disease: present status. Cell Mol Neurobiol 24:301–316

    Article  PubMed  Google Scholar 

  • Drucker-Colín R, Madrazo I, Ostrosky-Solis F, Shkurovich M, Franco R, Torres C (1988) Adrenal medullary tissue transplants in the caudate nucleus of Parkinson’s patients. Prog Brain Res 78:567–574

    Article  PubMed  Google Scholar 

  • Dunnett SB, Bjorklund A (1999) Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature 399:A32–A39

    Article  CAS  PubMed  Google Scholar 

  • Eaton MJ, Duplan H (2004) Useful cell lines derived from the adrenal medulla. Mol Cell Endocrinol 228:39–52

    Article  CAS  PubMed  Google Scholar 

  • Eaton MJ, Frydel BR, Lopez TL, Nie XT, Huang J, McKillop J, Sagen J (2000) Generation and initial characterization of conditionally immortalized chromaffin cells. J Cell Biochem 79:38–57

    Article  CAS  PubMed  Google Scholar 

  • Ehrhart-Bornstein M, Breidert M, Guadanucci P, Wozniak W, Bocian-Sobkowska J, Malendowicz LK, Bornstein SR (1997) 17 alpha-hydroxylase and chromogranin A in 6th week human fetal adrenals. Horm Metab Res 29:30–32

    Article  CAS  PubMed  Google Scholar 

  • Elder EE, Elder G, Larsson C (2005) Pheochromocytoma and functional paraganglioma syndrome: no longer the 10% tumor. J Surg Oncol 89:193–201

    Article  PubMed  Google Scholar 

  • Elhamdani A, Palfrey CH, Artalejo CR (2002) Ageing changes the cellular basis of the “fight-or-flight” response in human adrenal chromaffin cells. Neurobiol Aging 23:287–293

    Article  PubMed  Google Scholar 

  • Erickson JD, Schafer MK, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci USA 93:5166–5171

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S (2005) Cells of the sympathoadrenal lineage: Biological properties as donor tissue for cell-replacement therapies for Parkinson’s disease. Brain Res Brain Res Rev 49:343–354

    Article  PubMed  CAS  Google Scholar 

  • Finotto S, Krieglstein K, Schober A, Deimling F, Lindner K, Bruhl B, Beier K, Metz J, Garcia-Arraras JE, Roig-Lopez JL, Monaghan P, Schmid W, Cole TJ, Kellendonk C, Tronche F, Schutz G, Unsicker K (1999) Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126:2935–2944

    CAS  PubMed  Google Scholar 

  • Freed WJ, Morihisa JM, Spoor E, Hoffer BJ, Olson L, Seiger A, Wyatt RJ (1981) Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 292:351–352

    Article  CAS  PubMed  Google Scholar 

  • Gandía L, Mayorgas I, Michelena P, Cuchillo I, de Pascual R, Abad F, Novalbos JM, Larranaga E, Garcia AG (1998) Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflugers Arch 436:696–704

    Article  PubMed  Google Scholar 

  • Goetz CG, Stebbins G T 3rd, Klawans HL, Koller WC, Grossman RG, Bakay RA, Penn RD (1991) United Parkinson foundation neurotransplantation registry on adrenal medullary transplants: presurgical, and 1- and 2-year follow-up. Neurology 41:1719–1722

    CAS  PubMed  Google Scholar 

  • Gut P, Huber K, Lohr J, Bruhl B, Oberle S, Treier M, Ernsberger U, Kalcheim C, Unsicker K (2005) Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development 132:4611–4619

    Article  CAS  PubMed  Google Scholar 

  • Hagn C, Schmid KW, Fischer-Colbrie R, Winkler H (1986) Chromogranin A, B, and C in human adrenal medulla and endocrine tissues. Lab Investig 55:405–411

    CAS  PubMed  Google Scholar 

  • Hama AT, Sagen J (1994) Alleviation of neuropathic pain symptoms by xenogeneic chromaffin cell grafts in the spinal subarachnoid space. Brain Res 651:183–193

    Article  CAS  PubMed  Google Scholar 

  • Healy DG, Abou-Sleiman PM, Ozawa T, Lees AJ, Bhatia K, Ahmadi KR, Wullner U, Berciano J, Moller JC, Kamm C, Burk K, Barone P, Tolosa E, Quinn N, Goldstein DB, Wood NW (2004) A functional polymorphism regulating dopamine beta-hydroxylase influences against Parkinson’s disease. Ann Neurol 55:443–446

    Article  CAS  PubMed  Google Scholar 

  • Helman LJ, Ahn TG, Levine MA, Allison A, Cohen PS, Cooper MJ, Cohn DV, Israel MA (1988) Molecular cloning and primary structure of human chromogranin A (secretory protein I) cDNA. J Biol Chem 263:11559–11563

    CAS  PubMed  Google Scholar 

  • Hernández-Guijo JM, Gandía L, Cuchillo-Ibanez I, Albillos A, Novalbos J, Gilsanz F, Larranaga E, de Pascual R, Abad F, Garcia AG (2000) Altered regulation of calcium channels and exocytosis in single human pheochromocytoma cells. Pflugers Arch 440:253–263

    PubMed  Google Scholar 

  • Hervonen A (1971) Development of catecholamine-storing cells in human fetal paraganglia and adrenal medulla. A histochemical and electron microscopical study. Acta Physiol Scand Suppl 368:1–94

    CAS  PubMed  Google Scholar 

  • Hervonen A, Kanerva L (1973) Neuronal differentiation in human fetal adrenal medulla. Int J Neurosci 5:43–46

    Article  CAS  PubMed  Google Scholar 

  • Hervonen A, Hervonen H, Rechardt L (1972) Axonal growth from the primitive sympathetic elements of human fetal adrenal medulla. Experientia 28:178–179

    Article  CAS  PubMed  Google Scholar 

  • Hinde FR, Johnston DI (1984) Hypoglycaemia during illness in children with congenital adrenal hyperplasia. Br Med J (Clin Res Ed) 289:1603–1604

    Article  CAS  Google Scholar 

  • Hsiao RJ, Parmer RJ, Takiyyuddin MA, O’Connor DT (1991) Chromogranin A storage and secretion: sensitivity and specificity for the diagnosis of pheochromocytoma. Medicine (Baltim) 70:33–45

    CAS  Google Scholar 

  • Huber K, Kalcheim C, Unsicker K (2009) The development of the chromaffin cell lineage from the neural crest. Auton Neurosci 151:10–16

    Article  CAS  PubMed  Google Scholar 

  • Jiao SS, Zhang WC, Cao JK, Zhang ZM, Wang H, Ding MC, Zhang Z, Sun JB, Sun YC, Shi MT (1988) Study of adrenal medullary tissue transplantation to striatum in Parkinsonism. Prog Brain Res 78:575–580

    Article  CAS  PubMed  Google Scholar 

  • Jozan S, Aziza J, Chatelin S, Evra C, Courtade-Saidi M, Parant O, Sol JC, Zhou H, Lazorthes Y (2007) Human fetal chromaffin cells: a potential tool for cell pain therapy. Exp Neurol 205:525–535

    Article  PubMed  Google Scholar 

  • Kaelin W G Jr (2003) The von hippel-lindau gene, kidney cancer, and oxygen sensing. J Am Soc Nephrol 14:2703–2711

    Article  PubMed  Google Scholar 

  • Kondo K, Kim WY, Lechpammer M, Kaelin W G Jr (2003) Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1:E83

    Article  PubMed  Google Scholar 

  • Lazorthes Y, Sagen J, Sallerin B, Tkaczuk J, Duplan H, Sol JC, Tafani M, Bes JC (2000) Human chromaffin cell graft into the CSF for cancer pain management: A prospective phase II clinical study. Pain 87:19–32

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin W G Jr, Schlisio S (2005) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8:155–167

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22:457–468

    Article  CAS  PubMed  Google Scholar 

  • López-Lozano JJ, Brera B, Abascal J, Bravo G (1989) Preparation of adrenal medullary tissue for transplantation in Parkinson’s disease: a new procedure. Technical note. J Neurosurg 71:452–454

    Article  PubMed  Google Scholar 

  • López-Lozano JJ, Bravo G, Abascal J, Brera B, Millan I (1999) Clinical outcome of cotransplantation of peripheral nerve and adrenal medulla in patients with Parkinson’s disease. Clinica Puerta de Hierro neural transplantation group. J Neurosurg 90:875–882

    Article  PubMed  Google Scholar 

  • López-Lozano JJ, Mata M, Bravo G (2000) Neural transplants in Parkinson disease: clinical results of 10 years of experience. Group of neural transplants of the CPH. Rev Neurol 30:1077–1083

    PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316:831–834

    Article  CAS  PubMed  Google Scholar 

  • Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray J, Comings DE (2001) Phenylethanolamine N-methyltransferase (PNMT) gene and early-onset alzheimer disease. Am J Med Genet 105:312–316

    Article  CAS  PubMed  Google Scholar 

  • Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray JP, Comings DE (2002) Association between the phenylethanolamine N-methyltransferase gene and multiple sclerosis. J Neuroimmunol 124:101–105

    Article  CAS  PubMed  Google Scholar 

  • Merke DP, Bornstein SR (2005) Congenital adrenal hyperplasia. Lancet 365:2125–2136

    Article  PubMed  Google Scholar 

  • Merke DP, Chrousos GP, Eisenhofer G, Weise M, Keil MF, Rogol AD, Van Wyk JJ, Bornstein SR (2000) Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency. N Engl J Med 343:1362–1368

    Article  CAS  PubMed  Google Scholar 

  • Molenaar WM, Lee VM, Trojanowski JQ (1990) Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells an immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins. Exp Neurol 108:1–9

    Article  CAS  PubMed  Google Scholar 

  • Mousavi M, Hellstrom-Lindahl E, Guan ZZ, Bednar I, Nordberg A (2001) Expression of nicotinic acetylcholine receptors in human and rat adrenal medulla. Life Sci 70:577–590

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Koide N, Tsuboi M, Kohno S, Hikita K, Kaneda N (2008a) Autocrine TGF-beta signaling is required for the GDNF/CNTF-induced neuronal differentiation of adrenal chromaffin tsAM5D cells expressing temperature-sensitive SV40 T-antigen. Neurosci Lett 438:42–47

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Tsuboi M, Koide N, Hikita K, Kohno S, Kaneda N (2008b) Neuronal differentiation elicited by glial cell line-derived neurotrophic factor and ciliary neurotrophic factor in adrenal chromaffin cell line tsAM5D immortalized with temperature-sensitive SV40 T-antigen. J Neurosci Res 86:1694–1710

    Article  CAS  PubMed  Google Scholar 

  • Neumann HP, Berger DP, Sigmund G, Blum U, Schmidt D, Parmer RJ, Volk B, Kirste G (1993) Pheochromocytomas, multiple endocrine neoplasia type 2, and von hippel-lindau disease. N Engl J Med 329:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • O’Connor DT (2003) The adrenal medulla, catecholamines, and phaeochromocytoma. In: Cecil RL et al (eds) Cecil’s textbook of medicine. Saunders, Philadelphia, pp 1419–1424

    Google Scholar 

  • O’Connor DT, Frigon RP, Sokoloff RL (1984) Human chromogranin A purification and characterization from catecholamine storage vesicles of human pheochromocytoma. Hypertension 6:2–12

    PubMed  Google Scholar 

  • O’Connor DT, Kailasam MT, Kennedy BP, Ziegler MG, Yanaihara N, Parmer RJ (2002) Early decline in the catecholamine release-inhibitory peptide catestatin in humans at genetic risk of hypertension. J Hypertens 20:1335–1345

    Article  PubMed  Google Scholar 

  • Olson L, Backlund EO, Ebendal T, Freedman R, Hamberger B, Hansson P, Hoffer B, Lindblom U, Meyerson B, Stromberg I (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease. One-year follow-up of first clinical trial. Arch Neurol 48:373–381

    CAS  PubMed  Google Scholar 

  • Opocher G, Schiavi F, Iacobone M, Toniato A, Sattarova S, Erlic Z, Martella M, Mian C, Merante Boschin I, Zambonin L, De Lazzari P, Murgia A, Pelizzo MR, Favia G, Mantero F (2006) Familial nonsyndromic pheochromocytoma. Ann N Y Acad Sci 1073:149–155

    Article  PubMed  Google Scholar 

  • Parlato R, Otto C, Tuckermann J, Stotz S, Kaden S, Grone HJ, Unsicker K, Schutz G (2009) Conditional inactivation of glucocorticoid receptor gene in dopamine-beta-hydroxylase cells impairs chromaffin cell survival. Endocrinology 150:1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J (2008) Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci 11:755–761

    Article  CAS  PubMed  Google Scholar 

  • Pederson LC, Lee JE (2003) Pheochromocytoma. Curr Treat Options Oncol 4:329–337

    Article  PubMed  Google Scholar 

  • Pérez-Alvarez A, Albillos A (2007) Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells. J Neurochem 103:2281–2290

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Alvarez A, Hernández-Vivanco A, Cano-Abad M, Albillos A (2008) Pharmacological and biophysical properties of Ca2+ channels and subtype distributions in human adrenal chromaffin cells. Pflugers Arch 456:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647

    Article  CAS  PubMed  Google Scholar 

  • Peterson DI, Price ML, Small CS (1989) Autopsy findings in a patient who had an adrenal-to-brain transplant for Parkinson’s disease. Neurology 39:235–238

    CAS  PubMed  Google Scholar 

  • Pohorecky LA, Wurtman RJ (1971) Adrenocortical control of epinephrine synthesis. Pharmacol Rev 23:1–35

    CAS  PubMed  Google Scholar 

  • Powers JF, Tsokas P, Tischler AS (1998) The ret-activating ligand GDNF is differentiative and not mitogenic for normal and neoplastic human chromaffin cells in vitro. Endocr Pathol 9:325–331

    Article  CAS  PubMed  Google Scholar 

  • Powers JF, Picard KL, Tischler AS (2009) RET expression and neuron-like differentiation of pheochromocytoma and normal chromaffin cells. Horm Metab Res 41:710–714

    Article  CAS  PubMed  Google Scholar 

  • Rao F, Keiser HR, O’Connor DT (2000) Malignant pheochromocytoma chromaffin granule transmitters and response to treatment. Hypertension 36:1045–1052

    CAS  PubMed  Google Scholar 

  • Rao F, Zhang L, Wessel J, Zhang K, Wen G, Kennedy BP, Rana BK, Das M, Rodríguez-Flores JL, Smith DW, Cadman PE, Salem RM, Mahata SK, Schork NJ, Taupenot L, Ziegler MG, O’Connor DT (2007) Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo. Circulation 116:993–1006

    Article  CAS  PubMed  Google Scholar 

  • Rosmaninho-Salgado J, Araujo IM, Alvaro AR, Mendes AF, Ferreira L, Grouzmann E, Mota A, Duarte EP, Cavadas C (2009) Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukin-1beta: role of neuropeptide Y and nitric oxide. J Neurochem 109:911–922

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Hingorani A, Jia H, Ashby M, Hopper R, Clayton D, Brown MJ (1998) Positive association of tyrosine hydroxylase microsatellite marker to essential hypertension. Hypertension 32:676–682

    CAS  PubMed  Google Scholar 

  • Speiser PW, Serrat J, New MI, Gertner JM (1992) Insulin insensitivity in adrenal hyperplasia due to nonclassical steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 75:1421–1424

    Article  CAS  PubMed  Google Scholar 

  • Surratt CK, Persico AM, Yang XD, Edgar SR, Bird GS, Hawkins AL, Griffin CA, Li X, Jabs EW, Uhl GR (1993) A human synaptic vesicle monoamine transporter cDNA predicts posttranslational modifications, reveals chromosome 10 gene localization and identifies TaqI RFLPs. FEBS Lett 318:325–330

    Article  CAS  PubMed  Google Scholar 

  • Symington T (1969) Functional pathology of the human adrenal gland. Williams & Wilkins, Baltimore

    Google Scholar 

  • Takiyyuddin MA, Cervenka JH, Pandian MR, Stuenkel CA, Neumann HP, O’Connor DT (1990a) Neuroendocrine sources of chromogranin-A in normal man: clues from selective stimulation of endocrine glands. J Clin Endocrinol Metab 71:360–369

    Article  CAS  PubMed  Google Scholar 

  • Takiyyuddin MA, Cervenka JH, Sullivan PA, Pandian MR, Parmer RJ, Barbosa JA, O’Connor DT (1990b) Is physiologic sympathoadrenal catecholamine release exocytotic in humans? Circulation 81:185–195

    CAS  PubMed  Google Scholar 

  • Takiyyuddin MA, Brown MR, Dinh TQ, Cervenka JH, Braun SD, Parmer RJ, Kennedy B, O’Connor DT (1994) Sympatho-adrenal secretion in humans: factors governing catecholamine and storage vesicle peptide co-release. J Auton Pharmacol 14:187–200

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS, Dichter MA, Biales B, DeLellis RA, Wolfe H (1976) Neural properties of cultured human endocrine tumor cells of proposed neural crest origin. Science 192:902–904

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS, DeLellis RA, Biales B, Nunnemacher G, Carabba V, Wolfe HJ (1980) Nerve growth factor-induced neurite outgrowth from normal human chromaffin cells. Lab Investig 43:399–409

    CAS  PubMed  Google Scholar 

  • Tischler AS, DeLellis RA, Slayton VW, Blount MW, Wolfe HJ (1983) Enkephalin-like immunoreactivity in human adrenal medullary cultures. Lab Investig 48:13–18

    CAS  PubMed  Google Scholar 

  • Tischler AS, Lee YC, Perlman RL, Costopoulos D, Bloom SR (1985) Production of “ectopic” vasoactive intestinal peptide-like immunoreactivity in normal human chromaffin cell cultures. Life Sci 37:1881–1886

    Article  CAS  PubMed  Google Scholar 

  • Tkaczuk J, Bes JC, du Portal H, Tafani M, Duplan H, Abbal M, Lazorthes Y, Ohayon E (1997) Intrathecal allograft of chromaffin cells for intractable pain treatment: A model for understanding CNS tolerance mechanisms in humans. Transplant Proc 29:2356–2357

    Article  CAS  PubMed  Google Scholar 

  • Trifaró JM (2002) Molecular biology of the chromaffin cell. Ann N Y Acad Sci 971:11–18

    Article  PubMed  Google Scholar 

  • Unsicker K, Krisch B, Otten U, Thoenen H (1978) Nerve growth factor-induced fiber outgrowth from isolated rat adrenal chromaffin cells: Impairment by glucocorticoids. Proc Natl Acad Sci USA 75:3498–3502

    Article  CAS  PubMed  Google Scholar 

  • Unsicker K, Huber K, Schutz G, Kalcheim C (2005) The chromaffin cell and its development. Neurochem Res 30:921–925

    Article  CAS  PubMed  Google Scholar 

  • Vernino S, Hopkins S, Wang Z (2009) Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy. Auton Neurosci 146:3–7

    Article  CAS  PubMed  Google Scholar 

  • Villee DB, Engel LL, Loring JM, Villee CA (1961) Steroid hydroxylation in human fetal adrenals: formation of 16 alpha-hydroxyprogesterone, 17-hydroxyprogesterone and deoxycorticosterone. Endocrinology 69:354–372

    Article  CAS  PubMed  Google Scholar 

  • Von Euler U, Franksson C, Hellstrom J (1954) Adrenaline and noradrenaline content of surgically removed human suprarenal glands. Acta Physiol Scand 31:6–8

    Article  Google Scholar 

  • Wei J, Ramchand CN, Hemmings GP (1997) Possible association of catecholamine turnover with the polymorphic (TCAT)n repeat in the first intron of the human tyrosine hydroxylase gene. Life Sci 61:1341–1347

    Article  CAS  PubMed  Google Scholar 

  • Wilburn LA, Jaffe RB (1988) Quantitative assessment of the ontogeny of met-enkephalin, norepinephrine and epinephrine in the human fetal adrenal medulla. Acta Endocrinol (Copenh) 118:453–459

    CAS  Google Scholar 

  • Xu W, Gelber S, Orr-Urtreger A, Armstrong D, Lewis RA, Ou CN, Patrick J, Role L, De Biasi M, Beaudet AL (1999) Megacystis, mydriasis, and ion channel defect in mice lacking the alpha3 neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 96:5746–5751

    Article  CAS  PubMed  Google Scholar 

  • Yamano E, Isowa T, Nakano Y, Matsuda F, Hashimoto-Tamaoki T, Ohira H, Kosugi S (2008) Association study between reward dependence temperament and a polymorphism in the phenylethanolamine N-methyltransferase gene in a Japanese female population. Compr Psychiatry 49:503–507

    Article  PubMed  Google Scholar 

  • Zhang L, Rao F, Wessel J, Kennedy BP, Rana BK, Taupenot L, Lillie EO, Cockburn M, Schork NJ, Ziegler MG, O’Connor DT (2004) Functional allelic heterogeneity and pleiotropy of a repeat polymorphism in tyrosine hydroxylase: prediction of catecholamines and response to stress in twins. Physiol Genomics 19:277–291

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AHV holds a fellowship award from the Universidad Autónoma de Madrid. This work was supported by a grant from the Ministerio de Ciencia y Tecnología No. BFU2008-01382/BFI awarded to AA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almudena Albillos.

Additional information

A commentary to this article can be found at doi:10.1007/s10571-010-9607-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Alvarez, A., Hernández-Vivanco, A. & Albillos, A. Past, Present and Future of Human Chromaffin Cells: Role in Physiology and Therapeutics. Cell Mol Neurobiol 30, 1407–1415 (2010). https://doi.org/10.1007/s10571-010-9582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9582-0

Keywords

Navigation