Skip to main content
Log in

EphB3 receptor and ligand expression in the adult rat brain

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Summary

Eph receptors and ligands are two families of proteins that control axonal guidance during development. Their expression was originally thought to be developmentally regulated but recent work has shown that several EphA receptors are expressed postnatally. The EphB3 receptors are expressed during embryonic development in multiple regions of the central nervous system but their potential expression and functional role in the adult brain is unknown. We used in situ hybridization, immunohistochemistry, and receptor affinity probe in situ staining to investigate EphB3 receptors mRNA, protein, and ligand (ephrin-B) expression, respectively, in the adult rat brain. Our results indicate that EphB3 receptor mRNA and protein are constitutively expressed in discrete regions of the adult rat brain including the cerebellum, raphe pallidus, hippocampus, entorhinal cortex, and both motor and sensory cortices. The spatial profile of EphB3 receptors was co-localized to regions of the brain that had a high level of EphB3 receptor binding ligands. Its expression pattern suggests that EphB3 may play a role in the maintenance of mature neuronal connections or re-arrangement of synaptic connections during late stages of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asan E, Langenhan T, Holtman B et al (2003) Ciliary neurotrophic factor in the olfactory bulb of rats and mice. Neuroscience 120:99–112

    Article  PubMed  CAS  Google Scholar 

  • Baker RK, Vanderboom AK, Bell GW et al (2001) Expression of the receptor tyrosine kinase gene EphB3 during early stages of chick embryo development. Mech Develop 104:129–132

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Represa A, Tremblay E et al (1992) Epileptogenesis and neuronal plasticity: studies on kainate receptor in the human and rat hippocampus. Epilepsy Res Suppl 8:369–373

    PubMed  CAS  Google Scholar 

  • Benson MD, Romero MI, Lush ME et al (2005) Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. PNAS 102:10694–10699

    Article  PubMed  CAS  Google Scholar 

  • Bergemann AD, Cheng HG, Brambilla R et al (1995) ELF-2, a new member of the Eph ligand family, is segmentally expressed in mouse embryos in the region of the hindbrain and newly forming somites. Mol Cell Biol 15:4921–4929

    PubMed  CAS  Google Scholar 

  • Biervert C, Horvath E, Fahrig T (2001) Semiquantitative expression analysis of ephrine-receptor tyrosine kinase mRNA’s in a rat model of traumatic brain injury. Neurosci Letts 315:25–28

    Article  CAS  Google Scholar 

  • Braisted JE, McLaughlin T, Wang HU et al (1997) Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Develop Biol 191:14–28

    Article  PubMed  CAS  Google Scholar 

  • Breitschopf H, Suchanek G, Gould RM et al (1992) In situ hybridization with digoxigenin-labeled probes: sensitive and reliable detection method applied to myelinating rat brain. Acta Neuropathol 84(6):581–587

    Article  PubMed  CAS  Google Scholar 

  • Bruckner K, Pasquale EB, Klein R (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275:1640–1643

    Article  PubMed  CAS  Google Scholar 

  • Bundesen LQ, Scheel TA, Bregman BS et al (2003). Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 23:7789–7800

    PubMed  CAS  Google Scholar 

  • Calo L, Cinque C, Patane M et al (2006) Interaction between ephrins/Eph receptors and excitatory amino acid receptors. J Neurochem 98:1–10

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MK, Shilling H, Vandenbos T et al (1995) Ligands for EPH-related tyrosine kinase receptors are developmentally regulated in the CNS. J Neurosci Res 42:199–206

    Article  PubMed  CAS  Google Scholar 

  • Castellani V, Yue Y, Gao P et al (1998) Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J Neurosci 18:4663–4672

    PubMed  CAS  Google Scholar 

  • Cheng HJ, Flanagan JG (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79:157–168

    Article  PubMed  CAS  Google Scholar 

  • Cheng HJ, Nakamoto M, Bergemann AD et al (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381

    Article  PubMed  CAS  Google Scholar 

  • Cheung CC, Hohmann JG, Clifton DK et al (2001) Distribution of galanin messenger RNA-expressing cells in murine brain and their regulation by leptin in regions of the hypothalamus. Neuroscience 103:423–432

    Article  PubMed  CAS  Google Scholar 

  • Ciossek T, Lerch MM, Ullrich A (1995) Cloning, characterization, and differential expression of MDK2 and MDK5, two novel receptor tyrosine kinases of the eck/eph family. Oncogene 11:2085–2095

    PubMed  CAS  Google Scholar 

  • Conover JC, Doetsch F, Garcia-Verdugo JM et al (2000) Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 3:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Davy A, Gale NW, Murray EW et al (1999) Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Develop 13:3125–3135

    Article  PubMed  CAS  Google Scholar 

  • Drescher U, Kremoser C, Handwerker C et al (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370

    Article  PubMed  CAS  Google Scholar 

  • Eph Nomenclature Committee (1997) Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell 90:403–404

    Google Scholar 

  • Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annl Rev Neurosci 21:309–345

    Article  CAS  Google Scholar 

  • Flenniken AM, Gale NW, Yancopoulos GD et al (1996) Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Develop Biol 179:382–401

    Article  PubMed  CAS  Google Scholar 

  • Friesen J, Barbacid M (1997) Genetic analysis of the role of Eph receptors in the development of the mammalian nervous system. Cell Tissue Res 290:209–215

    Article  Google Scholar 

  • Gale NW, Flenniken A, Compton DC et al (1996a) Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene 13:1343–1352

    CAS  Google Scholar 

  • Gale NW, Holland SJ, Valenzuela DM et al (1996b) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17:9–19

    Article  CAS  Google Scholar 

  • Gao PP, Yue Y, Cerretti DP et al (1999) Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci USA 96:4073–4077

    Article  PubMed  CAS  Google Scholar 

  • Gao PP, Zhang JH, Yokoyama M et al (1996) Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc Natl Acad Sci USA 93:11161–11166

    Article  PubMed  CAS  Google Scholar 

  • Gao WQ, Shinsky N, Armanini MP et al (1998) Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5. Mol Cell Neurosci 11:247–259

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R, Shinsky N, Shih A et al (1999) Regulation of learning by EphA receptors: a protein targeting study. J Neurosci 19:9538–9549

    PubMed  CAS  Google Scholar 

  • Goldshmit Y, Galea MP, Wise G et al (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4 deficient mice. J Neurosci 24:10064–10073

    Article  PubMed  CAS  Google Scholar 

  • Grunwald IC, Korte M, Wolfer D et al (2001) Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Henderson JT, Georgiou J, Jia Z et al (2001) The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32:1041–1056

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Itkis OS, Ngo M et al (2003) Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol 163:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Henkemeyer M, Marengere LE, McGlade J et al (1994) Immunolocalization of the Nuk receptor tyrosine kinase suggests roles in segmental patterning of the brain and axonogenesis. Oncogene 9:1001–1014

    PubMed  CAS  Google Scholar 

  • Holland SJ, Gale NW, Mbamalu G et al (1996) Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725

    Article  PubMed  CAS  Google Scholar 

  • Holmberg J, Clarke DL, Frisen J (2000) Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408:203–206

    Article  PubMed  CAS  Google Scholar 

  • Holmberg J, Frisen J (2002) Ephrins are not only unattractive. Trends Neurosci 25:239–243

    Article  PubMed  CAS  Google Scholar 

  • Humpel C, Lindqvist E, Olson L (1993) Detection of nerve growth factor mRNA in rodent salivary glands with digoxigenin-and 33P-labeled oligonucleotides: effects of castration and sympathectomy. J Histochem Cytochem 41:703–708

    PubMed  CAS  Google Scholar 

  • Irizarry-Ramírez M, Willson CA, Cruz L et al (2005) Upregulation of EphA3 receptors after spinal cord injury. J Neurotrauma 22:929–935

    Article  PubMed  Google Scholar 

  • Jevince AR, Kadison SR, Pittman AJ et al (2006) Distribution of EphB receptors and Ephrin-B1 in the developing vertebrate spinal cord. J of Comparative Neurology 497:734–750

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Cage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Keynes R, Cook GM (1995) Axon guidance molecules. Cell 83:161–169

    Article  PubMed  CAS  Google Scholar 

  • Komminoth P, Merk FB, Leav I et al (1992) Comparison of 35S- and digoxigenin-labeled RNA and oligonucleotide probes for in situ hybridization. Expression of mRNA of the seminal vesicle secretion protein II and androgen receptor genes in the rat prostate. Histochemistry 98:217–228

    Article  PubMed  CAS  Google Scholar 

  • Kullander K, Butt SJ, Lebret JM et al (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    Article  PubMed  CAS  Google Scholar 

  • Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486

    Article  PubMed  CAS  Google Scholar 

  • Lai C, Lemke G (1991) An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6:691–704

    Article  PubMed  CAS  Google Scholar 

  • Liebl D, Morris D, Henkemeyer M et al (2003) mRNA Expression of ephrins and Eph receptor tyrosine kinases in the neonatal and adult mouse central nervous system. J Neurosci Res 71:7–22

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Hawkes E, Ishimaru T et al (2006) EphB3: An endogenous mediator of adult axonal plasticity and regrowth after CNS injury. J Neurosci 26:3087–3101

    Article  PubMed  CAS  Google Scholar 

  • Marquardt T, Shirasaki R, Ghosh S et al (2005) Coexpressed EphA receptors and ephrin-A ligands mediate opposing actions on growth cone navigation from distinct membrane domains. Cell 121:4–6

    Article  CAS  Google Scholar 

  • Martone ME, Holash JA, Bayardo A et al (1997) Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 771:238–250

    Article  PubMed  CAS  Google Scholar 

  • Mellitzer G, Xu G, Wilkinson DG (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81

    Article  PubMed  CAS  Google Scholar 

  • Miranda JD, White LA, Marcillo AE et al (1999) Induction of Eph B3 after spinal cord injury. Exp Neurol 156:218–222

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Flores MT, Wandosell F (1999) Upregulation of Eph receptors after excitotoxic injury in adult hippocampus. Neuroscience 91:193–201

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Wanaka A, Taguchi A et al (1995) Differential expressions of the eph family of receptor tyrosine kinase genes (sek, elk, eck) in the developing nervous system of the mouse. Brain Res Mol Brain Res 29:325–335

    Article  PubMed  CAS  Google Scholar 

  • Murai KK, Pasquale EB (2004) Eph receptors, ephrins and synaptic function. Neurosci 10:304–314

    Article  CAS  Google Scholar 

  • O’Leary DD, Wilkinson DG (1999) Eph receptors and ephrins in neural development. Curr Opin Neurobiol 9:65–73

    Article  PubMed  CAS  Google Scholar 

  • Orioli D, Henkemeyer M, Lemke G et al (1996) Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J 15:6035–6049

    PubMed  CAS  Google Scholar 

  • Orioli D, Klein R (1997) The Eph receptor family: axonal guidance by contact repulsion. Trends Genet 13:354–359

    Article  PubMed  CAS  Google Scholar 

  • Pasquale EB (1997) The Eph family of receptors. Curr Opin Cell Biol 9:608–615

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Puente XS, Lopez-Otin C (2004) A genomic analysis of rat proteases and protease inhibitors. Genome Res 14:609–622

    Article  PubMed  CAS  Google Scholar 

  • Ricard J, Salinas J, Garcia L et al (2006) EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci 31:713–722

    Article  PubMed  CAS  Google Scholar 

  • Rodenas-Ruano A, Perez-Pinzon MA, Green EJ et al (2006) Distinct roles for ephrinB3 in the formation and function of hippocampal synapses. Dev Biol 292:34–45

    Article  PubMed  CAS  Google Scholar 

  • Rogers JH, Ciossek T, Menzel P et al (1999) Eph receptors and ephrins demarcate cerebellar lobules before and during their formation. Mech Develop 87:119–128

    Article  CAS  Google Scholar 

  • Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100:43–440

    Article  Google Scholar 

  • Sobel RA (2005) EphrinA receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 15:35–45

    Article  PubMed  CAS  Google Scholar 

  • Stein E, Savaskan NE, Ninnemann O et al (1999) A role for the Eph ligand ephrin-A3 in entorhino-hippocampal axon targeting. J Neurosci 19:8885–8893

    PubMed  CAS  Google Scholar 

  • Takasu MA, Dalva MB, Zigmond RE et al (2002) Modulation of NMDA receptor-dependent calcium influx and gene expresion through EphB receptors. Science 295:491–495

    Article  PubMed  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Wang HU, Anderson DJ (1997) Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18:383–396

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DG (2001) Multiple roles of Eph receptors and ephrins in neural development. Nat Rev Neurosci 2:155–164

    Article  PubMed  CAS  Google Scholar 

  • Willson CA, Irizarry-Ramírez M, Gaskins HE et al (2002) Up-regulation of EphA receptor expression in the injured adult spinal cord. Cell Transplant 11:229–239

    PubMed  Google Scholar 

  • Willson CA, Miranda JD, Foster RD et al (2003) Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression. Cell Transplant 12:279–290

    PubMed  Google Scholar 

  • Yue Y, Widmer DA, Halladay AK et al (1999) Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2. J Neurosci 19:2090–2101

    PubMed  CAS  Google Scholar 

  • Zagrebelsky M, Buffo A, Skerra A et al (1998) Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. J Neurosci 18:7912–7929

    PubMed  CAS  Google Scholar 

  • Zhang JH, Cerretti DP, Yu T et al (1996) Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J Neurosci 16:7182–7192

    PubMed  CAS  Google Scholar 

  • Zisch AH, Pasquale EB (1997) The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res 290:217–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Kentucky Spinal Cord and Head Injury Research Trust (8–29), Norton Healthcare, the Commonwealth of Kentucky Research Challenge Trust Fund (SRW), MBRS/SCORE (SO6 GM008224), SNRP (NS39405), RCMI (G12RR03051), and PR-EPSCOR (EPS-9874782) (JDM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. Miranda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willson, C.A., Foster, R.D., Onifer, S.M. et al. EphB3 receptor and ligand expression in the adult rat brain. J Mol Hist 37, 369–380 (2006). https://doi.org/10.1007/s10735-006-9067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-006-9067-0

Keywords

Navigation