Skip to main content
Log in

Seizure-like afterdischarges simulated in a model neuron

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl , ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (I Na,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I Na,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aitken PG, Borgdorff AJ, Juta AJA, Kiehart DP, Somjen GG, Wadman WJ (1998) Volume changes induced by osmotic stress in freshly isolated rat hippocampal neurons. Eur. J. Physiol. 436: 991–998.

    CAS  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J. Neurosci. 22: 1042–1053.

    PubMed  CAS  Google Scholar 

  • Amzica F, Steriade M (2000) Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J. Neurosci. 20: 6648–6665.

    PubMed  CAS  Google Scholar 

  • Anderson WW, Lewis DV, Swartzwelder HS, Wilson WA (1986) Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 398: 215–219.

    PubMed  CAS  Google Scholar 

  • Ashcroft FM (2000) Ion Channels and Disease. Academic Press, San Diego.

    Google Scholar 

  • Azouz R, Jensen MS, Yaari Y (1996) Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. J. Physiol. 492: 211–223.

    PubMed  CAS  Google Scholar 

  • Baker DA, Xi Z-X, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J. Neurosci. 22: 9134–9141.

    PubMed  CAS  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2004) Potassium model for slow (203 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92: 1116–1132.

    PubMed  CAS  Google Scholar 

  • Beck H, Steffens R, Elger CE, Heinemann U (1998) Voltage-dependent Ca2+ currents in epilepsy. Epilepsy Res. 32: 321–332.

    PubMed  CAS  Google Scholar 

  • Benninger C, Kadis J, Prince DA (1980) Extracellular calcium and potassium changes in hippocampal slices. Brain Res. 187: 165–182.

    PubMed  CAS  Google Scholar 

  • Betz AL (1985) Epithelial properties of brain capillary endothelium. Feder. Proc. 44: 2614–2615.

    CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79: 763–780.

    PubMed  CAS  Google Scholar 

  • Borck C, Jefferys JGR (1999) Seizure-like events in disinhibited ventral slices of adult rat hippocampus. J. Neurophysiol. 82: 2130–2142.

    PubMed  CAS  Google Scholar 

  • Borgdorff AJ (2002) Calcium dynamics in hippocampal neurones. Thesis, University of Amsterdam, Amsterdam.

  • Borg-Graham LJ (1999) Interpretation of data and mechanisms for hippocampal pyramidal cell models. In: PS Ulinski, EG Jones, A Peters, eds. Models of Cortical Circuits, Cerebral Cortex, vol. 13. Plenum Press, New York, pp. 19–138.

    Google Scholar 

  • Bradbury MWB, Stulcova B (1970) Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol. 208: 415–430.

    PubMed  CAS  Google Scholar 

  • Buchhalter JR (2000) Inherited epilepsies. In: SM Pulst, ed. Neurogenetics. Oxford University Press, New York, pp. 335–350.

    Google Scholar 

  • Calvin WH, Sypert GW (1976) Fast and slow pyramidal tract neurons: An analysis of their contrasting repetitive firing properties in the cat. J. Neurophysiol. 39: 420–434.

    PubMed  CAS  Google Scholar 

  • Chen KC, Nicholson C (2000) Spatial buffering of potassium ions in brain extracellular space. Biophys. J. 78: 2776–2797.

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13: 99–104.

    PubMed  CAS  Google Scholar 

  • Connors BW, Telfeian AE (2002) Dynamic properties of cells, synapses, circuits and seizures in neocortex. Adv. Neurol. 84: 141–152.

    Google Scholar 

  • Courtemanche M, Ramirez RJ, Nattel S (1998) Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275: H301–H321.

    PubMed  CAS  Google Scholar 

  • Crill WE (1996) Persistent sodium current in mammalian neurons. Annu. Rev. Physiol. 58: 349–362.

    PubMed  CAS  Google Scholar 

  • Crill WE, Schwindt PC (1986) Role of persistent inward and outward membrane currents in epileptiform bursting in mammalian neurons. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Raven Press, New York, pp 225–233.

    Google Scholar 

  • Crowder JM, Croucher MJ, Bradford HF, Collins JF (1987) Excitatory amino acid receptors and depolarization-induced Ca2+ influx into hippocampal slices. J. Neurochem. 48: 1917–1924.

    PubMed  CAS  Google Scholar 

  • Dichter MA, Herman CJ, Selzer M (1972) Silent cells during interictal discharges and seizures in hippocampal penicillin foci. Evidence for the role of extracellular K+ in the transition from the interictal state to seizures. Brain Res. 48: 173–183.

    PubMed  CAS  Google Scholar 

  • Dietzel I, Heinemann U, Lux HD (1989) Relations between slow extracellular potential changes, glial potassium buffering and electrolyte and cellular volume changes during neuronal hyperactivity in cat brain. Glia 2: 25–44.

    PubMed  CAS  Google Scholar 

  • Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420: 173–178.

    PubMed  CAS  Google Scholar 

  • Feldberg W, Sherwood SL (1957) Effects of calcium and potassium injected into the cerebral ventricles of the cat. J. Physiol. 139: 408–416.

    PubMed  CAS  Google Scholar 

  • Fertziger AP, Ranck JB (1970) Potassium accumulation in interstitial space during epileptiform seizures. Exp. Neurol. 26: 571–585.

    PubMed  CAS  Google Scholar 

  • Fisher RS, Pedley TA, Moody WJ, Prince DA (1976) The role of extracellular potassium in hipocampal epilepsy. Arch. Neurol. 33: 76–83.

    PubMed  CAS  Google Scholar 

  • Franceschetti S, Guatteo E, Panzica F, Sancini G, Wanke E, Avanzini G (1995) Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain Res. 696: 127–139.

    PubMed  CAS  Google Scholar 

  • French CR, Sah P, Buckett KJ, Gage PW (1990) A voltage-dependent persistent sodium current in mammalian hippocampal neurons. J. Gen. Physiol. 95: 1139–1157.

    PubMed  CAS  Google Scholar 

  • Fujikawa DG, Kim JS, Daniels AH, Alcaraz AF, Sohn TB (1996) In vivo elevation of extracellular potassium in the rat amygdala increases extracellular glutamate and aspartate and damages neurons. Neuroscience 74: 695–706.

    PubMed  CAS  Google Scholar 

  • Gloor P, Vera CL, Sperti L, Ray SN (1961) Investigation on the mechanism of epileptic discharge in the hippocampus. Epilepsia 2: 42–62.

    Article  PubMed  CAS  Google Scholar 

  • Glötzner F, Grüsser OJ (1968) Membranpotential und Entladungsfolgen corticaler Zellen, EEG und corticales DC-Potential bei generalisierten Krampfanfällen. Arch. Psychat. Ztschr. ges. Neurol. 210: 313–339.

    Google Scholar 

  • Green JD (1964) The hippocampus. Physiol. Rev. 44: 561–608.

    PubMed  CAS  Google Scholar 

  • Green JD, Maxwell DS (1961) Hippocampal electrical activity I. Morphological aspects. Electroenceph. Clin. Neurophysiol. 13: 837–846.

    Google Scholar 

  • Green JD, Petsche H (1961) Hippocampal electrical activity. IV. Abnormal electrical activity. Electroenceph. Clin. Neurophysiol. 13: 868–879.

    Google Scholar 

  • Gutnick MJ, Connors BW, Prince DA (1982) Mechanisms of neocortical epileptogenesis in vitro. J. Neurophysiol. 48: 1321–1335.

    PubMed  CAS  Google Scholar 

  • Hablitz JJ (1984) Picrotoxin-induced epileptiform activity in hippocampus: Role of endogenous versus synaptic factors. J. Neurophysiol. 51: 1011–1027.

    PubMed  CAS  Google Scholar 

  • Hablitz JJ, Heinemann U, Lux H-D (1986) Step reductions in extracellular Ca2+ activate a transient inward current in chick dorsal root ganglion cells. Biophys. J. 50: 753–757.

    PubMed  CAS  Google Scholar 

  • Hammarström AKM, Gage PW (1998) Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons. J. Physiol. 510: 735–741.

    PubMed  Google Scholar 

  • Hammarström AKM, Gage PW (2000) Oxygen-sensing persistent sodium channels in rat hippocampus. J. Physiol. 529: 107–118.

    PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) “Ceiling” of stimulus induced rises in extracellular potassium concentration in cerebral cortex of cats. Brain Res. 120: 231–250.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp. Brain Res. 27: 237–243.

    PubMed  CAS  Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1978) Changes in extracellular free calcium and potassium activity in the somatosensory cortex of cats. In: N Chalazonitis, M Boisson, eds. Abnormal Neuronal Discharges. Raven Press, New York, pp. 329–345.

    Google Scholar 

  • Hille B (2001) Ionic Channels of Excitable Membranes. Sinauer Associates, New York.

    Google Scholar 

  • Hines M, Carnevale NT (1997) The NEURON simulation environment. Neural. Comput. 9: 1179–1209.

    PubMed  CAS  Google Scholar 

  • Hochman DW, Baraban SC, Owens WM, Schwartzkroin PA (1995) Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity. Science 270: 99–101.

    PubMed  CAS  Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J. Neurophysiol. 68: 1373–1383.

    PubMed  CAS  Google Scholar 

  • Jefferys JGR, Haas HL (1982) Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450.

    PubMed  CAS  Google Scholar 

  • Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation and electrical coupling in the elevated potassium model of hippocampal epilepsy. J. Neurophysiol. 77: 1224–1233.

    PubMed  CAS  Google Scholar 

  • Jing J, Aitken PG, Somjen GG (1994) Interstitial volume changes during spreading depression (SD) and SD-like hypoxic depolarization in hippocampal tissue slices. J. Neurophysiol. 71: 2548–2551.

    PubMed  CAS  Google Scholar 

  • Jung R, Tönnies JF (1950) Hirnelektrische Untersuchungen über Entstehung und Erhaltung von Krampfenladungen: die Vorgänge am Reizort und die Brensfähigkeit des Gehirns. Arch. Psychiat. Ztschr. Neurol. 185: 701–735.

    CAS  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J. Neurophysiol. 84: 495–512.

    PubMed  CAS  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2001) Simulation of membrane current and ion concentrations in a neuron predicts epileptiform discharge and spreading depression (SD). Soc. Neurosci. Abstr. 27: 559–553.

    Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2002a) Conditions for the triggering of spreading depression studied with computer simulations. J. Neurophysiol. 88: 2700–2712.

    PubMed  CAS  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2002b) Ion currents and ion fluxes responsible for self-sustained and self-limiting tonic seizure-like discharge in a neuron mode. Soc. Neurosci. Abstr. 602–607.

  • Kandel ER (1964) Electrical properties of hypothalamic neuroendocrine cells. J. Gen. Physiol. 47: 691–717.

    PubMed  CAS  Google Scholar 

  • Kandel ER, Spencer WA (1961) The pyramidal cells during hippocampal seizure. Epilepsia 2: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Karst H, Joëls M, Wadman WJ (1993) Low-threshold calcium current in dendrites of the adult rat hippocampus. Neurosci. Lett. 164: 154–158.

    PubMed  CAS  Google Scholar 

  • Ketelaars SOM, Gorter JA, van Vliet EA, Lopes da Silva FH, Wadman WJ (2001) Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy. Neuroscience 105: 109–120.

    PubMed  CAS  Google Scholar 

  • Köhling R, Straub H, Speckmann E-J (2000) Differential involvement of L-type calcium channels in epileptogenesis of rat hippocampal slices during ontogenesis. Neurobiol. Dis. 7: 471–482.

    PubMed  Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I. Development of seizurelike activity in low extracellular calcium. J. Neurophysiol. 56: 409–423.

    PubMed  CAS  Google Scholar 

  • Korn SJ, Giacchino JL, Chamberlin NL, Dingledine R (1987) Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57: 325–340.

    PubMed  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG (1966) The physiology of neuroglial cells. Erg. Physiol. 57: 1–90.

    PubMed  CAS  Google Scholar 

  • Loiseau P, Seizure precipitants (1998) In: J Engel, TA Pedley, eds. Epilepsy. A Comprehensive Textbook. Lippincott-Raven, Philadelphia, pp. 93–97.

  • Lopantsev V, Avoli M (1998) Laminar organization of epileptiform discharges in the rat entorhinal cortex in vitro. J. Physiol. 509: 785–796.

    PubMed  CAS  Google Scholar 

  • Lux HD (1973) Kaliumaktivität im Hirngewebe. Untersuchungen zum Krampfproblem. Mitteilungen Max Planck Gesellsch. 1: 34–52.

    Google Scholar 

  • Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches. Raven Press, New York, pp. 619–639.

    Google Scholar 

  • Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J. Neurophysiol. 77: 1679–1696.

    PubMed  CAS  Google Scholar 

  • Magee JC, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidel neurons. Ann. Rev. Physiol. 60: 327–346.

    CAS  Google Scholar 

  • McBain CJ, Traynelis SF, Dingledine R (1990) Regional variation of extracellular space in the hippocampus. Science 249: 674–677.

    PubMed  CAS  Google Scholar 

  • McCormick DA, Connors BW Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.

    Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay cells. J. Neurophysiol. 68: 1384–1400.

    PubMed  CAS  Google Scholar 

  • Mazel T, Šimonová Z, Syková E (1998) Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport 9: 1299–1304.

    PubMed  CAS  Google Scholar 

  • Migliore M, Cook E, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J. Neurophysiol. 73: 1157–1168.

    PubMed  CAS  Google Scholar 

  • Mitzdorf U (1985) Current source density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65: 37–100.

    PubMed  CAS  Google Scholar 

  • Nadkarni S, Jung P (2004) Dressed neurons: modeling neural-glial interactions. Physical. Biol. 1: 35–41.

    CAS  Google Scholar 

  • Neckelmann D, Amzica F, Steriade M (2000) Changes in neuronal conductance during different components of cortically generated spike-wave seizures. Neuroscience 96: 475–485.

    PubMed  CAS  Google Scholar 

  • Newman EA (1995) Glial cell regulation of extracellular potassium. In: H Kettenman, BR Ransom, eds. Neuroglia. Oxford University Press, New York, pp. 717–731.

    Google Scholar 

  • Oakley JC, Sypert GW, Ward AA (1972) Conductance changes in neocortical propagated seizure: Seizure termination. Exper. Neurol. 37: 300–311.

    CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Pedley TA, Fisher RS, Futamachi KJ, Prince DA (1976) Regulation of extracellular potassium concentration in epileptogenesis. Feder. Proc. 35: 1254–1259.

    CAS  Google Scholar 

  • Phillis JW, Perkins LM, O'Regan MH (1993) Potassium-evoked efflux of transmitter amino acids and purines from rat cerebral cortex. 31: 547–552.

  • Prince DA, Schwartzkroin PA (1978) Nonsynaptic mechanisms in epileptogenesis. In: N Chalazonitis, M Boisson, eds. Abnormal Neuronal Discharges. Raven Press, New York, pp. 1–12.

    Google Scholar 

  • Pumain R, Menini C, Heinemann U, Louvel J, Silva-Barrat C (1985) Chemical transmission is not necessary for epileptic seizures to persist in the baboon Papio papio. Exp. Neurol. 89: 250–258.

    PubMed  CAS  Google Scholar 

  • Puranam RS, McNamara JO (2001) Epilepsy and all that jazz. Nat. Med. 7: 1103–1105.

    Google Scholar 

  • Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL (2004) Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proc. Natl. Acad. Sci. USA 101: 11147–11152.

    PubMed  CAS  Google Scholar 

  • Somjen GG (2002) Ion regulation in the brain: implications for pathophysiology. The Neuroscientist 8: 254–267.

    PubMed  CAS  Google Scholar 

  • Somjen GG (2004) Ions in the Brain: Normal Function, Seizures and Stroke. Oxford University Press, New York.

    Google Scholar 

  • Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1985) Sustained potential shifts and paroxysmal discharges in hippocampal formation. J. Neurophysiol. 53: 1079–1097.

    PubMed  CAS  Google Scholar 

  • Somjen GG, Aitken PG, Giacchino JL, McNamara JO (1986) Interstitial ion concentrations and paroxysmal discharges in hippocampal formation and spinal cord. In: AV Delgado-Escueta, AA Ward, DM Woodbury, RJ Porter, eds. Basic Mechanisms of the Epilepsies. Raven Press, New York, pp 663–680.

    Google Scholar 

  • Somjen GG, Giacchino JL (1985) Potassium and calcium concentrations in interstitial fluid of hippocampal formation during paroxysmal responses. J. Neurophysiol. 53: 1098–1108.

    PubMed  CAS  Google Scholar 

  • Somjen GG, Kager H, Wadman WJ (in revision, a) Computer study of the effects of ion fluxes on neuron function and of K+ mediated neuron-glia interaction. J. Comput. Neurosci.

  • Somjen GG, Kager H, Wadman WJ (in revision, b) Calcium sensitive non-selective cation current promotes seizure-like discharge and spreading depression in a model neuron. J. Comput. Neurosci.

  • Somjen GG, Müller M (2000) Potassium-induced enhancement of persistent inward current in hippocampal neurons in isolation and in tissue slices. Brain Res. 885: 102–110.

    PubMed  CAS  Google Scholar 

  • Spampanato J, Aradi I, Soltész I, Goldin AL (2004) Increased neuronal firing in computational simulations of sodium channel mutations that cause generalized epilepsy with febrile seizures plus. J. Neurophysiol. 91: 2040–2050.

    PubMed  Google Scholar 

  • Steinhäuser C, Tennigkeit M, Matthies H, Gündel J (1990) Properties of the fast sodium channels in pyramidal neurones isolated from the CA1 and CA3 areas of the hippocampus of postnatal rats. Pflügers. Arch. 415: 756–761.

    PubMed  Google Scholar 

  • Steriade M, Amzica F, Neckelmann D, Timofeev I (1998) Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J. Neurophysiol. 80: 1456–1479.

    PubMed  CAS  Google Scholar 

  • Stringer JL, Lothman EW (1989) Maximal dentate gyrus activation: characteristics and alterations after repeated seizures. J. Neurophysiol. 62: 136–143.

    PubMed  CAS  Google Scholar 

  • Swenson AM, Bean BP (2003) Ionic mechanisms of burst firing in dissociated Purkinje neurons. J. Neurosci. 23: 9650–9663.

    Google Scholar 

  • Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348: 443–446.

    PubMed  CAS  Google Scholar 

  • Timofeev I, Grenier F, Steriade M (2004) Contributions of intrinsic neuronal factors in the generation of cortically driven electrographic seizures. J. Neurophysiol. 92: 1133–1143.

    PubMed  CAS  Google Scholar 

  • Traub RD, Dingledine R (1990) Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Role of spontaneous EPSPs in initiation. J. Neurophysiol. 64: 1009–1018.

    PubMed  CAS  Google Scholar 

  • Traub RD, Jefferys JGR, Miles R, Whittington MA, Tóth K (1994) A branching dendritic model of a rodent CA3 pyramidal neurone. J. Physiol. 481: 79–95.

    PubMed  CAS  Google Scholar 

  • Traub RD, Jefferys JGR (1998) Epilepsy in vitro: Electrophysiology and computer modeling. In: J Engel Jr, TA Pedley, eds. Epilepsy. A Comprehensive Textbook, vol. 1. Lippincott-Raven, Philadelphia, pp. 405–418.

    Google Scholar 

  • Traub RD, Jefferys JGR, Whittington MA (1999) Functionally relevant and functionally disruptive (epileptic) synchronized oscillations in brain slices. Adv. Neurol. 79: 709–724.

    PubMed  CAS  Google Scholar 

  • Traub RD, Llinas R (1979) Hippocampal pyramidal cells: Significance of dendritic ionic conductances for neuronal function and epileptogenesis. J. Neurophysiol. 42: 476–496.

    PubMed  CAS  Google Scholar 

  • Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66: 635–650.

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J. Neurophysiol. 59: 259–276.

    PubMed  CAS  Google Scholar 

  • Vreugdenhil M, Faas GC, Wadman WJ (1998) Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis. Neuroscience 86: 99–107.

    PubMed  CAS  Google Scholar 

  • Vreugdenhil M, Wadman WJ (1994) Kindling-induced long-lasting enhancement of calcium current in hippocampal CA1 area of the rat: relation to calcium-dependent inactivation. Neuroscience 59: 105–114.

    PubMed  CAS  Google Scholar 

  • Wadman WJ, Juta AJA, Kamphuis W, Somjen GG (1992) Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus. Brain Res. 570: 85–91.

    PubMed  CAS  Google Scholar 

  • Wong RKS, Prince DA (1978) Participation of calcium spikes during intrinsic burst firing in hippocampal neurons. Brain Res. 159: 385–390.

    PubMed  CAS  Google Scholar 

  • Wyler AR, Ward AA (1980) Epileptic neurons. In: JS Lockard, AA Ward, eds. Epilepsy: Window to Brain Mechanisms. Raven Press, New York, pp. 51–68.

    Google Scholar 

  • Xiong ZG, Lu WY, MacDonald JF (1997) Extracellular calcium sensed by a novel cation channel in hippocampal neurons. Proc. Natl. Acad. Sci. USA 94: 7012–7017.

    PubMed  CAS  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J. Neurophysiol. 56: 424–438.

    PubMed  CAS  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp. Brain Res. 51: 153–156.

    PubMed  CAS  Google Scholar 

  • Zuckermann EC, Glaser GH (1968) Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid. Exp. Neurol. 20: 87–110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Somjen.

Additional information

Action Editor: David Terman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kager, H., Wadman, W.J. & Somjen, G.G. Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22, 105–128 (2007). https://doi.org/10.1007/s10827-006-0001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-0001-y

Keywords

Navigation