Skip to main content
Log in

Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

During anesthesia, slow-wave sleep and quiet wakefulness, neuronal membrane potentials collectively switch between de- and hyperpolarized levels, the cortical UP and DOWN states. Previous studies have shown that these cortical UP/DOWN states affect the excitability of individual neurons in response to sensory stimuli, indicating that a significant amount of the trial-to-trial variability in neuronal responses can be attributed to ongoing fluctuations in network activity. However, as intracellular recordings are frequently not available, it is important to be able to estimate their occurrence purely from extracellular data. Here, we combine in vivo whole cell recordings from single neurons with multi-site extracellular microelectrode recordings, to quantify the performance of various approaches to predicting UP/DOWN states from the deep-layer local field potential (LFP). We find that UP/DOWN states in deep cortical layers of rat primary auditory cortex (A1) are predictable from the phase of LFP at low frequencies (< 4 Hz), and that the likelihood of a given state varies sinusoidally with the phase of LFP at these frequencies. We introduce a novel method of detecting cortical state by combining information concerning the phase of the LFP and ongoing multi-unit activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, J., Lampl, I., Reichova, I., Carandini, M., & Ferster, D. (2000). Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience, 3, 617–621.

    Article  CAS  PubMed  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of large variability in evoked cortical responses. Science, 273, 1868–1871.

    Article  CAS  PubMed  Google Scholar 

  • Azouz, R., & Gray, C. M. (1999). Cellular mechanisms contributing to response variability of cortical neurons in vivo. Journal of Neuroscience, 19, 2209–2223.

    CAS  PubMed  Google Scholar 

  • Bartho, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsaki, G. (2004). Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. Journal of Neurophysiology, 92, 600–608.

    Article  PubMed  Google Scholar 

  • Blanche, T. J., Spacek, M. A., Hetke, J. F., & Swindale, N. V. (2005). Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. Journal of Neurophysiology, 93, 2987–3000.

    Article  PubMed  Google Scholar 

  • Carandini, M. (2004). Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biology, 2(9), e264.

    Article  PubMed  Google Scholar 

  • Compte, A., Sanchez-Vives, M. V., McCormick, D. A., & Wang, X. J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89, 2707–2725.

    Article  PubMed  Google Scholar 

  • Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience, 15, 604–622.

    CAS  PubMed  Google Scholar 

  • Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network UP states in the neocortex. Nature, 423, 283–288.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, R. L., & Wilson, C. J. (1994). Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. Journal of Neurophysiology, 71, 17–32.

    CAS  PubMed  Google Scholar 

  • Creutzfeldt, O. D., Watanabe, S., & Lux, H. D. (1966a). Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimuluation. Electroencephalography and clinical neurophysiology, 20(1), 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt, O. D., Watanabe, S., & Lux, H. D. (1966b). Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalography and clinical neurophysiology, 20(1), 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Crochet, C., & Peterson, C. C. H. (2006). Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neuroscience, 9, 608–610.

    Article  CAS  PubMed  Google Scholar 

  • Curto, C., Sakata, S., Marguet, S., Itskov, V., & Harris, K. D. (2009). A simple model of cortical dynamics explains variability and state-dependence of sensory responses in urethane-anesthetized auditory cortex. Journal of Neuroscience, 29(34), 10600–10612.

    Article  CAS  PubMed  Google Scholar 

  • Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506.

    Article  PubMed  Google Scholar 

  • Destexhe, A., Contreras, D., & Steriade, M. (1999). Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. Journal of Neuroscience, 19, 4595–4608.

    CAS  PubMed  Google Scholar 

  • Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic ‘up’ states fragments of wakefulness? Trends in Neurosciences, 30(7), 334–342.

    Article  CAS  PubMed  Google Scholar 

  • Eccles, J. C. (1951). Interpretation of action potentials evoked in the cerebral cortex. Electroencephalography and clinical neurophysiology, 3(4), 449–464.

    Article  CAS  PubMed  Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26, 4535–4545.

    Article  CAS  PubMed  Google Scholar 

  • Haider, B., Duque, A., Hasenstaub, A. R., Yu, Y., & McCormick, D. A. (2007). Enhancement of visual responsiveness by spontaneous local network activity in vivo. Journal of Neurophysiology, 97, 4186–4202.

    Article  PubMed  Google Scholar 

  • Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsaki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology, 84(1), 401–414.

    CAS  PubMed  Google Scholar 

  • Hasenstaub, A. R., Sachdev, R. N., & McCormick, D. A. (2007). State changes rapidly modulate cortical neuronal responsiveness. Journal of Neuroscience, 27, 9607–9622.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, K. L., Battaglia, F. P., Harris, K. D., Maclean, J. N., Marshall, L., & Mehta, M. R. (2007). The upshot of up states in the neocortex: from slow oscillations to memory formation. Journal of Neuroscience, 27(44), 11838–11841.

    Article  CAS  PubMed  Google Scholar 

  • Holcman, D., & Tsodyks, M. (2006). The emergence of Up and Down states in cortical networks. PLoS Computational Biology, 2(3), e23.

    Article  PubMed  Google Scholar 

  • Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10(1), 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Kandel, A., & Buzsaki, G. (1997). Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. Journal of Neuroscience, 17, 6783–6797.

    CAS  PubMed  Google Scholar 

  • Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D., & Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron, 61(1), 35–41.

    Article  CAS  PubMed  Google Scholar 

  • Kayser, C., Montemurro, M. A., Logothesis, N. K., & Panzeri, S. (2009). Spike-phase coding boosts and stabilizes information carried by spatial and temporal spike patterns. Neuron, 61(4), 597–608.

    Article  CAS  PubMed  Google Scholar 

  • Kisley, M. A., & Gerstein, G. L. (1999). Trail-to-trail variability and state-dependent modulation of auditory-evoked responses in cortex. Journal of Neuroscience, 19(23), 10451–10460.

    CAS  PubMed  Google Scholar 

  • Lampl, I., Reichova, I., & Ferster, D. (1999). Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron, 22(2), 361–374.

    Article  CAS  PubMed  Google Scholar 

  • Li, C. T., Poo, M., & Yang, D. (2009). Burst spiking of a single cortical neuron modifies global brain state. Science, 324, 643–646.

    Article  CAS  PubMed  Google Scholar 

  • Luczak, A., Bartho, P., Marguet, S. L., Buzsaki, G., & Harris, K. D. (2007). Sequential structure of neocortical spontaneous activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Luczak, A., Bartho, P., & Harris, K. D. (2009). Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron, 62(3), 1–13.

    Article  Google Scholar 

  • Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archive European Journal of Physiology, 444(4), 491–498.

    Article  CAS  Google Scholar 

  • Maynard, E. M., Nordhausen, C. T., & Normann, R. A. (1997). The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Electroencephalography and Clinical Neurophysiology, 102(3), 228–239.

    Article  CAS  PubMed  Google Scholar 

  • Montemurro, M. A., Rasch, M. J., Murayama, Y., Logothetis, N. K., & Panzeri, S. (2008). Phase-of-firing coding of natural visual stimuli in primary visual cortex. Current Biology, 18(5), 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Parga, N., & Abbott, L. F. (2007). Network model of spontaneous activity exhibiting synchronous transitions between up and down states. Front. Neurosci., 1(1), 57–66.

    Article  PubMed  Google Scholar 

  • Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates—the new coronal set (5th ed.). New York: Academic.

    Google Scholar 

  • Petersen, C. C., Hahn, T. T., Mehta, M., Grinvald, A., & Sakmann, B. (2003). Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proceedings of the National Academy of Sciences of the United States of America, 100, 13638–13643.

    Article  CAS  PubMed  Google Scholar 

  • Poulet, J. F., & Petersen, C. C. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454, 881–885.

    Article  CAS  PubMed  Google Scholar 

  • Quiroga, R. Q., Nadasdy, Z., & Ben-Shaul, Y. (2004). Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8), 1661–1687.

    Article  PubMed  Google Scholar 

  • Reig, R., Gallego, R., Nowak, L. G., & Sanchez-Vives, M. V. (2006). Impact of cortical network Activity on short-term synaptic depression. Cerebral Cortex, 16(5), 688–695.

    Article  PubMed  Google Scholar 

  • Renart, A., de la Rocha, J., Hollender, L., Parga, N., Reyes, A., & Harris, K. D. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.

    Article  CAS  PubMed  Google Scholar 

  • Sachdev, R. N., Ebner, F. F., & Wilson, C. J. (2004). Effect of subthreshold up and down states on the whisker-evoked response in somatosensory cortex. Journal of Neurophysiology, 92, 3511–3521.

    Article  PubMed  Google Scholar 

  • Sakata, S., & Harris, K. D. (2009). Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron, 64(3), 404–418.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.

    Article  CAS  PubMed  Google Scholar 

  • Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423, 288–293.

    Article  CAS  PubMed  Google Scholar 

  • Steriade, M., Nunez, A., & Amzica, F. (1993). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8), 3252–3265.

    CAS  PubMed  Google Scholar 

  • Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85, 1969–1985.

    CAS  PubMed  Google Scholar 

  • Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy Sciences of the United States of America, 98(4), 1924–29.

    Article  CAS  Google Scholar 

  • Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, J. C., et al. (2009). Cortical firing and sleep homeostasis. Neuron, 63(6), 865–878.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C. J., & Groves, P. M. (1981). Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Research, 220(1), 67–80.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C. J., & Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 16, 2397–2410.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Gatsby Charitable Foundation (grant GAT2830 to SRS), NIH (grant MH073245 to KDH), an NSF International Fellowship (IRFP-NSF 0804305 to JAS), and a Marie Curie Outgoing International Fellowship (PC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman B. Saleem.

Additional information

Action Editor: Daniel Krzysztof Wojcik

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. S1

(GIF 33 kb)

High Resolution Image (EPS 1169 kb)

Suppl. Material

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saleem, A.B., Chadderton, P., Apergis-Schoute, J. et al. Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J Comput Neurosci 29, 49–62 (2010). https://doi.org/10.1007/s10827-010-0228-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0228-5

Keywords

Navigation