Skip to main content
Log in

Redundant information encoding in primary motor cortex during natural and prosthetic motor control

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, ‘MC’), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, ‘BC’). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI (‘direct’ neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI (‘indirect’ neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abbott, L. F., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Computation, 11, 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Ashe, J., & Georgopoulos, A. P. (1994). Movement parameters and neural activity in motor cortex and area 5. Cerebral Cortex, 4, 590–600.

    Article  PubMed  CAS  Google Scholar 

  • Averbeck, B. B., & Lee, D. (2006). Effects of noise correlations on information encoding and decoding. Journal of Neurophysiology, 95, 3633.

    Article  PubMed  Google Scholar 

  • Barlow, H. (2001). Redundancy reduction revisited. Network, 12, 241–253.

    PubMed  CAS  Google Scholar 

  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov, D. F., et al. (2003). Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biology, 1, 193–208.

    Article  CAS  Google Scholar 

  • Fetz, E. E., & Cheney, P. D. (1980). Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. Journal of Neurophysiology, 44, 751–772.

    PubMed  CAS  Google Scholar 

  • Fu, Q. G., Flament, D., Coltz, J. D., & Ebner, T. J. (1995). Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. Journal of Neurophysiology, 73, 836–854.

    PubMed  CAS  Google Scholar 

  • Ganguly, K., & Carmena, J. M. (2009). Emergence of a stable cortical map for neuroprosthetic control. PLoS Biology, 7, e1000153.

    Article  PubMed  Google Scholar 

  • Gawne, T. J., & Richmond, B. J. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of Neuroscience, 13, 2758–2771.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., & Massey, J. T. (1982). On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. The Journal of Neuroscience, 2, 1527–1537.

    PubMed  CAS  Google Scholar 

  • Hatsopoulos, N. G., Ojakangas, C. L., Paninski, L., & Donoghue, J. P. (1998). Information about movement direction obtained from synchronous activity of motor cortical neurons. Proceedings of the National Academy of Sciences of the United States of USA, 95, 15706–15711.

    Article  CAS  Google Scholar 

  • Jarosiewicz, B., Chase, S. M., Fraser, G. W., Velliste, M., Kass, R. E., & Schwartz, A. B. (2008). Functional network reorganization during learning in a brain-computer interface paradigm. Proceedings of the National Academy of Sciences of the United States of USA, 105, 19486.

    Article  CAS  Google Scholar 

  • Johnson, M. T., Mason, C. R., & Ebner, T. J. (2001). Central processes for the multiparametric control of arm movements in primates. Current Opinion in Neurobiology, 11, 684–688.

    Article  PubMed  CAS  Google Scholar 

  • Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. Journal of Neurophysiology, 80, 3321.

    PubMed  CAS  Google Scholar 

  • Latham, P. E., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25, 5195.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Normann, R. A., et al. (1999). Neuronal interactions improve cortical population coding of movement direction. The Journal of Neuroscience, 19, 8083–8093.

    PubMed  CAS  Google Scholar 

  • Narayanan, N. S., Kimchi, E. Y., & Laubach, M. (2005). Redundancy and synergy of neuronal ensembles in motor cortex. The Journal of Neuroscience, 25, 4207–4216.

    Article  PubMed  CAS  Google Scholar 

  • Nudo, R. J., Milliken, G. W., Jenkins, W. M., & Merzenich, M. M. (1996). Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. The Journal of Neuroscience, 16, 785–807.

    PubMed  CAS  Google Scholar 

  • Oram, M. W., Hatsopoulos, N. G., Richmond, B. J., & Donoghue, J. P. (2001). Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. Journal of Neurophysiology, 86, 1700–1716.

    PubMed  CAS  Google Scholar 

  • Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal populations: information theory and decoding approaches. Nature Reviews Neuroscience, 10, 173–185.

    Article  PubMed  CAS  Google Scholar 

  • Schneidman, E., Bialek, W., & Berry, M. J. (2003). Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23, 11539–11553.

    PubMed  CAS  Google Scholar 

  • Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., & Donoghue, J. P. (2002). Brain-machine interface: instant neural control of a movement signal. Nature, 416, 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of Neuroscience, 18, 3870–3896.

    PubMed  CAS  Google Scholar 

  • Shamir, M., & Sompolinsky, H. (2011). Nonlinear population codes. Neural Computation, 16, 1105–1136.

    Article  Google Scholar 

  • Thach, W. T. (1978). Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. Journal of Neurophysiology, 41, 654–676.

    PubMed  CAS  Google Scholar 

  • Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370, 140–143.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research reported here was supported by the National Science Foundation CDI Type-I grant to M.C.G. and J.M.C., and the Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development, and the American Heart Association/American Stroke Association to K.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Carmena.

Additional information

Action Editor: Eberhard Fetz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

So, K., Ganguly, K., Jimenez, J. et al. Redundant information encoding in primary motor cortex during natural and prosthetic motor control. J Comput Neurosci 32, 555–561 (2012). https://doi.org/10.1007/s10827-011-0369-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0369-1

Keywords

Navigation