Skip to main content
Log in

Emergent spike patterns in neuronal populations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

This numerical study documents and analyzes emergent spiking behavior in local neuronal populations. Emphasis is given to a phenomenon we call clustering, by which we refer to a tendency of random groups of neurons large and small to spontaneously coordinate their spiking activity in some fashion. Using a sparsely connected network of integrate-and-fire neurons, we demonstrate that spike clustering occurs ubiquitously in both high firing and low firing regimes. As a practical tool for quantifying such spike patterns, we propose a simple scheme with two parameters, one setting the temporal scale and the other the amount of deviation from the mean to be regarded as significant. Viewing population activity as a sequence of events, meaning relatively brief durations of elevated spiking, separated by inter-event times, we observe that background activity tends to give rise to extremely broad distributions of event sizes and inter-event times, while driving a system imposes a certain regularity on its inter-event times, producing a rhythm consistent with broad-band gamma oscillations. We note also that event sizes and inter-event times decorrelate very quickly. Dynamical analyses supported by numerical evidence are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. 1 If the refractory period is absent or too short, g E may increase with each population spike. Our 4ms refractory period was chosen to quench this build-up in conductance and subsequent runaway spiking. It has virtually no effect on regimes other than those with very small α.

References

  • Battaglia, D., & Hansel, D. (2011). Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex. PLoS Computational Biology, 7 (10), e1002176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beggs, J.M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. Journal of Neuroscience, 23, 11167–11177.

    CAS  PubMed  Google Scholar 

  • Börgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15 (3), 509539.

    Article  Google Scholar 

  • Börgers, C., & Kopell, N. (2005). Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Computation, 17 (3), 557608.

    Article  Google Scholar 

  • Börgers, C., Epstein, S., Kopell, N. (2005). Background gamma rhythmicity and attention in cortical local circuits: A computational study. Proceedings of the National Academy of the Sciences of the United States of America, 102 (19), 7002–7007.

    Article  Google Scholar 

  • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Comparative Neuroscience, 8, 183–208.

    Article  CAS  Google Scholar 

  • Churchland, M.M., & et al. (2010). Stimulus onset quenches neural variability: A widespread cortical phenomenon. Nature Neuroscience, 13 (3), 369–378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dehghani, N., Hatsopoulos, N.G., Haga, Z.D., Parker, R.A., Greger, B., Halgren, E., Cash, S.S., Destexhe, A. (2012). Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep. arXiv: http://arxiv.org/abs/1203.0738v4[q-bio.NC].

  • Deville, L., & Peskin, C.S. (2008). Synchrony and asynchrony in a fully stochastic neural network. Bulletin of Mathematical Biology, 70 (6), 1608–1633.

    Article  PubMed  Google Scholar 

  • Hahn, G., Petermann, T., Havenith, M.N., Yu, S., Singer, W., Plenz, D., Nikolic, D. (2010). Neuronal avalanches in spontaneous activity in vivo. Journal of Neurophysiology, 104, 3312–22.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hansel, D., & Sompolinsky, H. (1996). Chaos and synchrony in a model of a hypercolumn in visual cortex. Journal of Comparative Neuroscience, 3, 7–34.

    Article  CAS  Google Scholar 

  • Hansel, D., Mato, G., Meunier, C. (1993). Clustering and slow switching in globally coupled phase oscillators. Physical Review E, 48 (5).

  • Henrie, W., & Shapley, R. (2005). LFP power spectra in V1 cortex: the graded effect of stimulus contrast. Journal of Neurophysiology, 94, 479–90.

    Article  PubMed  Google Scholar 

  • Kilpatrick, Z.P., & Ermentrout, B. (2011). Sparse gamma rhythms arising through clustering in adapting neuronal networks. PLoS Computational Biology, 7 (11), e1002281 . doi:10.1371/journal.pcbi.1002281.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koch, C. (1999). Biophysics of computation. London: Oxford University Press.

    Google Scholar 

  • Kriener, B., Tetzlaff, T., Aertsen, A., Diesmann, M., Rotter, S. (2008). Correlations and population dynamics in cortical networks. Neural Computation, 20, 2185–2226.

    Article  PubMed  Google Scholar 

  • Kuramoto, Y. (1975) In Arakai, H. (Ed.), International symposium on mathematical problems in theoretical physics, Lecture notes in physics (Vol. 39, p. 420). New York: Springer.

  • Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 296 (5575), 2049– 2052.

    Article  CAS  PubMed  Google Scholar 

  • Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience. doi:10.1038/nn.3220.

    PubMed Central  PubMed  Google Scholar 

  • Luczak, A., Bartho, P., Harris, K.D. (2013). Gating of sensory input by spontaneous cortical activity. Journal of Neuroscience, 33 (4), 1684–1695. doi:10.1523/JNEUROSCI.2928-12.2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mark, S., & Tsodyks, M. (2012). Population spikes in cortical networks during different functional states. Frontiers in Computational Neuroscience, 6, 43. doi:10.3389/fncom.

    PubMed Central  PubMed  Google Scholar 

  • Mazzoni, A., & et al. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 5, e539.

    Google Scholar 

  • Mirollo, R.E., & Strogatz, S.H. (1990). Synchronization of pulse-coupled biological oscillators . SIAM Journal on Applied Mathematics, 50 (6), 1645–1662.

    Article  Google Scholar 

  • Okun, M., Yger, P., Marguet, S.L., Gerard-Mercier, F., Benucci, A., Katzner, S., et al. (2012). Population rate dynamics and multineuron firing patterns in sensory cortex. Journal of Neuroscience, 32 (48), 17108–17119. doi:10.1523/JNEUROSCI.1831-12.2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plenz, D., & et al. (2011). Multi-electrode array recordings of neuronal avalanches in organotypic cultures. Journal of Visualized Experiments, 1:pii, 2949.

    Google Scholar 

  • Rangan, A.V., & Young, L.S. (2013a). Emergent dynamics in a model of visual cortex. Journal of Computational Neuroscience, 35 (2), 155–167.

    Article  Google Scholar 

  • Rangan, A.V., & Young, L.S. (2013b). Dynamics of spiking neurons: Between homogeneity and synchrony. Journal of Computational Neuroscience, 34 (3), 433–460.

    Article  Google Scholar 

  • Samonds, J.M, Zhou, Z., Bernard, M.R., Bonds, A.B. (2005). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. Journal of Neurophysiology, 95 (4), 2602–2616.

    Article  PubMed  Google Scholar 

  • Shew, W.L., & et al. (2011). Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. Journal Neuroscience, 31, 55–63.

    Article  CAS  Google Scholar 

  • Staude, B., Rotter, S., Grün, S. (2009). CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. Journal of Computational Neuroscience. doi:10.1007/s10827-009-0195-x.

    PubMed Central  PubMed  Google Scholar 

  • Trousdale, J., Hu, Y., Shea-Brown, E., Josić, K. (2013). Newblock a generative spike train model with time-structured higher order correlations. Frontiers in Computational Neuroscience, 7.

  • Tsodyks, M., Mitkov, I., Sompolinsky, H. (1993). Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions. Physical Review Letters, 71 (8), 1280–1283.

    Article  PubMed  Google Scholar 

  • Tsodyks, M., Uziel, A., Markram, H. (2000). Synchrony generation in recurrent networks with frequency- dependent synapses. Journal of Neuroscience, 20, RC50.

    CAS  PubMed  Google Scholar 

  • Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B., Buhl, E.H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. International Journal of Psychophysiology, 38, 315–336.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S. et al. (2011). Higher-order interactions characterized in cortical activity. Journal Neuroscience, 31, 17514–17526.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Action Editor: David Terman

Conflict of interest

The authors declare that they have no conflict of interest

This research is supported in part by NSF Grant DMS-1101594.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chariker, L., Young, LS. Emergent spike patterns in neuronal populations. J Comput Neurosci 38, 203–220 (2015). https://doi.org/10.1007/s10827-014-0534-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0534-4

Keywords

Navigation