Skip to main content
Log in

The role of spiking and bursting pacemakers in the neuronal control of breathing

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Breathing is controlled by a distributed network involving areas in the neocortex, cerebellum, pons, medulla, spinal cord, and various other subcortical regions. However, only one area seems to be essential and sufficient for generating the respiratory rhythm: the preBötzinger complex (preBötC). Lesioning this area abolishes breathing and following isolation in a brain slice the preBötC continues to generate different forms of respiratory activities. The use of slice preparations led to a thorough understanding of the cellular mechanisms that underlie the generation of inspiratory activity within this network. Two types of inward currents, the persistent sodium current (INaP) and the calcium-activated non-specific cation current (ICAN), play important roles in respiratory rhythm generation. These currents give rise to autonomous pacemaker activity within respiratory neurons, leading to the generation of intrinsic spiking and bursting activity. These membrane properties amplify as well as activate synaptic mechanisms that are critical for the initiation and maintenance of inspiratory activity. In this review, we describe the dynamic interplay between synaptic and intrinsic membrane properties in the generation of the respiratory rhythm and we relate these mechanisms to rhythm generating networks involved in other behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alheid, G.F., Milsom, W.K., McCrimmon, D.R.: Pontine influences on breathing: an overview. Respir. Physiol. Neurobiol. 143(2–3), 105–114 (2004)

    Article  Google Scholar 

  2. Feldman, J.L., Del Negro, C.A.: Looking for inspiration: new perspectives on respiratory rhythm. Nat. Rev. Neurosci. 7(3), 232–242 (2006)

    Article  Google Scholar 

  3. Davenport, P.W., Reep, R.L., Thompson, F.J.: Phrenic nerve afferent activation of neurons in the cat SI cerebral cortex. J. Physiol. 588(Pt 5), 873–886 (2010)

    Article  Google Scholar 

  4. Harper, R.M.: Sudden infant death syndrome: a failure of compensatory cerebellar mechanisms? Pediatr. Res. 48(2), 140–142 (2000)

    Article  Google Scholar 

  5. Harper, R.M., Woo, M.A., Alger, J.R.: Visualization of sleep influences on cerebellar and brainstem cardiac and respiratory control mechanisms. Brain Res. Bull. 53(1), 125–131 (2000)

    Article  Google Scholar 

  6. Subramanian, H.H., Holstege, G.: Periaqueductal gray control of breathing. Adv. Exp. Med. Biol. 669, 353–358 (2010)

    Article  Google Scholar 

  7. von Leupoldt, A., Keil, A., Chan, P.Y., Bradley, M.M., Lang, P.J., Davenport, P.W.: Cortical sources of the respiratory-related evoked potential. Respir. Physiol. Neurobiol. 170(2), 198–201 (2010)

    Article  Google Scholar 

  8. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., Feldman, J.L.: Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991)

    Article  ADS  Google Scholar 

  9. Gray, P.A., Janczewski, W.A., Mellen, N., McCrimmon, D.R., Feldman, J.L.: Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat. Neurosci. 4(9), 927–930 (2001)

    Article  Google Scholar 

  10. McKay, L.C., Janczewski, W.A., Feldman, J.L.: Sleep-disordered breathing after targeted ablation of preBötzinger complex neurons. Nat. Neurosci. 8(9), 1142–1144 (2005)

    Article  Google Scholar 

  11. Ramirez, J.M., Schwarzacher, S.W., Pierrefiche, O., Olivera, B.M., Richter, D.W.: Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gasping. J. Physiol. 507(Pt 3), 895–907 (1998)

    Article  Google Scholar 

  12. Tan, W., Janczewski, W.A., Yang, P., Shao, X.M., Callaway, E.M., Feldman, J.L.: Silencing preBötzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat. Neurosci. 11, 538–540 (2008)

    Article  Google Scholar 

  13. Ramirez, J.M., Quellmalz, U.J., Richter, D.W.: Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice. J. Physiol. 491(Pt 3), 799–812 (1996)

    Google Scholar 

  14. Lieske, S.P., Thoby-Brisson, M., Telgkamp, P., Ramirez, J.M.: Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat. Neurosci. 3(6), 600–607 (2000)

    Article  Google Scholar 

  15. Viemari, J.C., Ramirez, J.M.: Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons. J. Neurophysiol. 95(4), 2070–2082 (2006)

    Article  Google Scholar 

  16. Surmeier, D.J., Mercer, J.N., Chan, C.S.: Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr. Opin. Neurobiol. 15(3), 312–318 (2005)

    Article  Google Scholar 

  17. Herrik, K.F., Christophersen, P., Shepard, P.D.: Pharmacological modulation of the gating properties of small conductance Ca2 + -activated K +  channels alters the firing pattern of dopamine neurons in vivo. J. Neurophysiol. 104(3), 1726–1735 (2010). PMID: 20660424. Epub 21 Jul 2010

    Article  Google Scholar 

  18. Ptak, K., Yamanishi, T., Aungst, J., Milescu, L.S., Zhang, R., Richerson, G.B., Smith, J.C.: Raphe neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P. J. Neurosci. 29(12), 3720–3737 (2009)

    Article  Google Scholar 

  19. Raman, I.M., Gustafson, A.E., Padgett, D.: Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J. Neurosci. 20(24), 9004–9016 (2000)

    Google Scholar 

  20. Takahashi, A., Shimamoto, A., Boyson, C.O., DeBold, J.F., Miczek, K.A.: GABA(B) receptor modulation of serotonin neurons in the dorsal raphe nucleus and escalation of aggression in mice. J. Neurosci. 30(35), 11771–11780 (2010)

    Article  Google Scholar 

  21. Ramirez, J.M., Tryba, A.K., Pena, F.: Pacemaker neurons and neuronal networks: an integrative view. Curr. Opin. Neurobiol. 14(6), 665–674 (2004)

    Article  Google Scholar 

  22. Del Negro, C.A., Koshiya, N., Butera, R.J., Jr., Smith, J.C.: Persistent sodium current, membrane properties and bursting behavior of pre-Bötzinger complex inspiratory neurons in vitro. J. Neurophysiol. 88(5), 2242–2250 (2002)

    Article  Google Scholar 

  23. Koshiya, N., Smith, J.C.: Neuronal pacemaker for breathing visualized in vitro. Nature 400(6742), 360–363 (1999)

    Article  ADS  Google Scholar 

  24. Mekllen, N.M., Mishra, D.: Functional anatomical evidence for respiratory rhythmogenic function of endogenous bursters in rat medulla. J. Neurosci. 30(25), 8383–8392 (2010)

    Article  Google Scholar 

  25. Pena, F., Parkis, M.A., Tryba, A.K., Ramirez, J.M.: Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43(1), 105–117 (2004)

    Article  Google Scholar 

  26. Thoby-Brisson, M., Ramirez, J.M.: Identification of two types of inspiratory pacemaker neurons in the isolated respiratory neural network of mice. J. Neurophysiol. 86(1), 104–112 (2001)

    Google Scholar 

  27. St.-John, W.M., Stornetta, R.L., Guyenet, P.G., Paton, J.F.: Location and properties of respiratory neurones with putative intrinsic bursting properties in the rat in situ. J. Physiol. 587(Pt 13), 3175–3188 (2009)

    Article  Google Scholar 

  28. Cymbalyuk, G.S., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci. 22(24), 10580–10592 (2002)

    Google Scholar 

  29. Golowasch, J., Buchholtz, F., Epstein, I.R., Marder, E.: Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. J. Neurophysiol. 67(2), 341–349 (1992)

    Google Scholar 

  30. Golowasch, J., Casey, M., Abbott, L.F., Marder, E.: Network stability from activity-dependent regulation of neuronal conductances. Neural Comput. 11(5), 1079–1096 (1999)

    Article  Google Scholar 

  31. Del Negro, C.A., Morgado-Valle, C., Feldman, J.L.: Respiratory rhythm: an emergent network property? Neuron 34(5), 821–830 (2002)

    Article  Google Scholar 

  32. Del Negro, C.A., Morgado-Valle, C., Hayes, J.A., Mackay, D.D., Pace, R.W., Crowder, E.A., Feldman, J.L.: Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25(2), 446–453 (2005)

    Article  Google Scholar 

  33. Tryba, A.K., Pena, F., Lieske, S.P., Viemari, J.C., Thoby-Brisson, M., Ramirez, J.M.: Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities. J. Neurophysiol. 99(5), 2114–2125 (2008)

    Article  Google Scholar 

  34. Koizumi, H., Smith, J.C.: Persistent Na +  and K + -dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro. J. Neurosci. 28(7), 1773–1785 (2008)

    Article  Google Scholar 

  35. Brumberg, J.C., Nowak, L.G., McCormick, D.A.: Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J. Neurosci. 20(13), 4829–4843 (2000)

    Google Scholar 

  36. Do, M.T., Bean, B.P.: Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39(1), 109–120 (2003)

    Article  Google Scholar 

  37. Taddese, A., Bean, B.P.: Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33(4), 587–600 (2002)

    Article  Google Scholar 

  38. Alzheimer, C., Schwindt, P.C., Crill, W.E.: Postnatal development of a persistent Na +  current in pyramidal neurons from rat sensorimotor cortex. J. Neurophysiol. 69(1), 290–292 (1993)

    Google Scholar 

  39. Carr, D.B., Cooper, D.C., Ulrich, S.L., Spruston, N., Surmeier, D.J.: Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. J. Neurosci. 22(16), 6846–6855 (2002)

    Google Scholar 

  40. Kay, A.R., Sugimori, M., Llinas, R.: Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. J. Neurophysiol. 80(3), 1167–1179 (1998)

    Google Scholar 

  41. Magistretti, J., Alonso, A.: Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J. Gen. Physiol. 114(4), 491–509 (1999)

    Article  Google Scholar 

  42. Maurice, N., Tkatch, T., Meisler, M., Sprunger, L.K., Surmeier, D.J.: D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J. Neurosci. 21(7), 2268–2277 (2001)

    Google Scholar 

  43. Ptak, K., Zummo, G.G., Alheid, G.F., Tkatch, T., Surmeier, D.J., McCrimmon, D.R.: Sodium currents in medullary neurons isolated from the pre-Bötzinger complex region. J. Neurosci. 25(21), 5159–5170 (2005)

    Article  Google Scholar 

  44. van Drongelen, W., Koch, H., Elsen, F.P., Lee, H.C., Mrejeru, A., Doren, E., Marcuccilli, C.J., Hereld, M., Stevens, R.L., Ramirez, J.M.: Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro. J. Neurophysiol. 96(5), 2564–2577 (2006)

    Article  Google Scholar 

  45. Wu, N., Enomoto, A., Tanaka, S., Hsiao, C.F., Nykamp, D.Q., Izhikevich, E., Chandler, S.H.: Persistent sodium currents in mesencephalic V neurons participate in burst generation and control of membrane excitability. J. Neurophysiol. 93(5), 2710–2722 (2005)

    Article  Google Scholar 

  46. Astman, N., Gutnick, M.J., Fleidervish, I.A.: Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J. Neurosci. 26(13), 3465–3473 (2006)

    Article  Google Scholar 

  47. Fleidervish, I.A., Gutnick, M.J.: Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J. Neurophysiol. 76(3), 2125–2130 (1996)

    Google Scholar 

  48. Schwindt, P., Crill, W.: Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. J. Neurophysiol. 81(3), 1341–1354 (1999)

    Google Scholar 

  49. Stuart, G., Sakmann, B.: Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15(5), 1065–1076 (1995)

    Article  Google Scholar 

  50. Pennartz, C.M., Bierlaagh, M.A., Geurtsen, A.M.: Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. J. Neurophysiol. 78(4), 1811–1825 (1997)

    Google Scholar 

  51. Catterall, W.A.: Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. Neurol. 79, 441–456 (1999)

    Google Scholar 

  52. Catterall, W.A.: From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26(1), 13–25 (2000)

    Article  Google Scholar 

  53. Donahue, L.M., Coates, P.W., Lee, V.H., Ippensen, D.C., Arze, S.E., Poduslo, S.E.: The cardiac sodium channel mRNA is expressed in the developing and adult rat and human brain. Brain Res. 887(2), 335–343 (2000)

    Article  Google Scholar 

  54. Goldin, A.L.: Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871–894 (2001)

    Article  Google Scholar 

  55. Goldin, A.L., Barchi, R.L., Caldwell, J.H., Hofmann, F., Howe, J.R., Hunter, J.C., Kallen, R.G., Mandel, G., Meisler, M.H., Netter, Y.B., Noda, M., Tamkun, M.M., Waxman, S.G., Wood, J.N., Catterall, W.A.: Nomenclature of voltage-gated sodium channels. Neuron 28(2), 365–368 (2000)

    Article  Google Scholar 

  56. Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., De Jonghe, P.: De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet. 68(6), 1327–1332 (2001)

    Article  Google Scholar 

  57. Escayg, A., MacDonald, B.T., Meisler, M.H., Baulac, S., Huberfeld, G., An-Gourfinkel, I., Brice, A., LeGuern, E., Moulard, B., Chaigne, D., Buresi, C., Malafosse, A.: Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24(4), 343–345 (2000)

    Article  Google Scholar 

  58. Wallace, R.H., Scheffer, I.E., Barnett, S., Richards, M., Dibbens, L., Desai, R.R., Lerman-Sagie, T., Lev, D., Mazarib, A., Brand, N., Ben-Zeev, B., Goikhman, I., Singh, R., Kremmidiotis, G., Gardner, A., Sutherland, G.R., George, A.L., Jr., Mulley, J.C., Berkovic, S.F.: Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 68(4), 859–865 (2001)

    Article  Google Scholar 

  59. Raman, I.M., Sprunger, L.K., Meisler, M.H., Bean, B.P.: Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19(4), 881–891 (1997)

    Article  Google Scholar 

  60. Vega-Saenz de Miera, E.C., Rudy, B., Sugimori, M., Llinas, R.: Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proc. Natl. Acad. Sci. USA 94(13), 7059–7064 (1997)

    Article  ADS  Google Scholar 

  61. Yu, F.H., Catterall, W.A.: Overview of the voltage-gated sodium channel family. Genome Biol. 4(3), 207 (2003)

    Article  Google Scholar 

  62. Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., McCormick, K.A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P.S., Catterall, W.A., Scheuer, T., Curtis, R.: Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J. Neurosci. 23(20), 7577–7585 (2003)

    Google Scholar 

  63. Brackenbury, W.J., Isom, L.L.: Voltage-gated Na +  channels: potential for beta subunits as therapeutic targets. Expert Opin. Ther. Targets. 12(9), 1191–1203 (2008)

    Article  Google Scholar 

  64. Isom, L.L.: Sodium channel beta subunits: anything but auxiliary. Neuroscientist 7(1), 42–54 (2001)

    Article  Google Scholar 

  65. Uebachs, M., Opitz, T., Royeck, M., Dickhof, G., Horstmann, M.T., Isom, L.L., Beck, H.: Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J. Neurosci. 30(25), 8489–8501 (2010)

    Article  Google Scholar 

  66. Wallace, R.H., Wang, D.W., Singh, R., Scheffer, I.E., George, A.L., Jr., Phillips, H.A., Saar, K., Reis, A., Johnson, E.W., Sutherland, G.R., Berkovic, S.F., Mulley, J.C.: Febrile seizures and generalized epilepsy associated with a mutation in the Na + -channel beta1 subunit gene SCN1B. Nat. Genet. 19(4), 366–370 (1998)

    Article  Google Scholar 

  67. Aman, T.K., Raman, I.M.: Inwardly permeating Na ions generate the voltage dependence of resurgent Na current in cerebellar Purkinje neurons. J. Neurosci. 30(16), 5629–5634 (2010)

    Article  Google Scholar 

  68. Bant, J.S., Raman, I.M.: Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc. Natl. Acad. Sci. USA 107(27), 12357–12362 (2010)

    Article  ADS  Google Scholar 

  69. Colquhoun, D., Neher, E., Reuter, H., Stevens, C.F.: Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294(5843), 752–754 (1981)

    Article  ADS  Google Scholar 

  70. Maruyama, Y., Peterson, O.H.: Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299(5879), 159–161 (1982)

    Article  ADS  Google Scholar 

  71. Congar, P., Leinekugel, X., Ben-Ari, Y., Crepel, V.: A long-lasting calcium-activated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. J. Neurosci. 17(14), 5366–5379 (1997)

    Google Scholar 

  72. Di Prisco, G.V., Pearlstein, E., Le Ray, D., Robitaille, R., Dubuc, R.: A cellular mechanism for the transformation of a sensory input into a motor command. J. Neurosci. 20(21), 8169–8176 (2000)

    Google Scholar 

  73. Partridge, L.D., Valenzuela, C.F.: Ca2 +  store-dependent potentiation of Ca2 + -activated non-selective cation channels in rat hippocampal neurones in vitro. J. Physiol. 521(Pt 3), 617–627 (1999)

    Article  Google Scholar 

  74. Launay, P., Fleig, A., Perraud, A.L., Scharenberg, A.M., Penner, R., Kinet, J.P.: TRPM4 is a Ca2 + -activated nonselective cation channel mediating cell membrane depolarization. Cell 109(3), 397–407 (2002)

    Article  Google Scholar 

  75. Ben-Mabrouk, F., Tryba, A.K.: Substance P modulation of TRPC3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur. J. Neurosci. 31(7), 1219–1232 (2010)

    Article  Google Scholar 

  76. Crowder, E.A., Saha, M.S., Pace, R.W., Zhang, H., Prestwich, G.D., Del Negro, C.A.: Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J. Physiol. 582(Pt 3), 1047–1058 (2007)

    Article  Google Scholar 

  77. Minke, B.: Drosophila mutant with a transducer defect. Biophys. Struct. Mech. 3(1), 59–64 (1977)

    Article  Google Scholar 

  78. Nilius, B., Owsianik, G., Voets, T., Peters, J.A.: Transient receptor potential cation channels in disease. Physiol. Rev. 87(1), 165–217 (2007)

    Article  Google Scholar 

  79. Greka, A., Navarro, B., Oancea, E., Duggan, A., Clapham, D.E.: TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat. Neurosci. 6(8), 837–845 (2003)

    Article  Google Scholar 

  80. Kim, S.J., Kim, Y.S., Yuan, J.P., Petralia, R.S., Worley, P.F., Linden, D.J.: Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 426(6964), 285–291 (2003)

    Article  ADS  Google Scholar 

  81. Moran, M.M., Xu, H., Clapham, D.E.: TRP ion channels in the nervous system. Curr. Opin. Neurobiol. 14(3), 362–369 (2004)

    Article  Google Scholar 

  82. Mori, Y., Takada, N., Okada, T., Wakamori, M., Imoto, K., Wanifuchi, H., Oka, H., Oba, A., Ikenaka, K., Kurosaki, T.: Differential distribution of TRP Ca2 +  channel isoforms in mouse brain. NeuroReport 9(3), 507–515 (1998)

    Google Scholar 

  83. Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., Julius, D.: Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464), 306–313 (2000)

    Article  ADS  Google Scholar 

  84. Zhang, Y., Hoon, M.A., Chandrashekar, J., Mueller, K.L., Cook, B., Wu, D., Zuker, C.S., Ryba, N.J.: Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3), 293–301 (2003)

    Article  Google Scholar 

  85. Corey, D.P.: New TRP channels in hearing and mechanosensation. Neuron 39(4), 585–588 (2003)

    Article  Google Scholar 

  86. Aarts, M., Iihara, K., Wei, W.L., Xiong, Z.G., Arundine, M., Cerwinski, W., MacDonald, J.F., Tymianski, M.: A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7), 863–877 (2003)

    Article  Google Scholar 

  87. Bengtson, C.P., Tozzi, A., Bernardi, G., Mercuri, N.B.: Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J. Physiol. 555(Pt 2), 323–330 (2004)

    Google Scholar 

  88. Tozzi, A., Bengtson, C.P., Longone, P., Carignani, C., Fusco, F.R., Bernardi, G., Mercuri, N.B.: Involvement of transient receptor potential-like channels in responses to mGluR-I activation in midbrain dopamine neurons. Eur. J. Neurosci. 18(8), 2133–2145 (2003)

    Article  Google Scholar 

  89. Karashima, Y., Prenen, J., Meseguer, V., Owsianik, G., Voets, T., Nilius, B.: Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflügers Arch. 457(1), 77–89 (2008)

    Article  Google Scholar 

  90. Nilius, B., Mahieu, F., Prenen, J., Janssens, A., Owsianik, G., Vennekens, R., Voets, T.: The Ca2 + -activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J. 25(3), 467–478 (2006)

    Article  Google Scholar 

  91. Zavala-Tecuapetla, C., Aguileta, M.A., Lopez-Guerrero, J.J., Gonzalez-Marin, M.C., Pena, F.: Calcium-activated potassium currents differentially modulate respiratory rhythm generation. Eur. J. Neurosci. 27(11), 2871–2884 (2008)

    Article  Google Scholar 

  92. Pena, F., Ramirez, J.M.: Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J. Neurosci. 22(24), 11055–11064 (2002)

    Google Scholar 

  93. Pena, F., Ramirez, J.M.: Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J. Neurosci. 24(34), 7549–7556 (2004)

    Article  Google Scholar 

  94. Shao, X.M., Feldman, J.L.: Acetylcholine modulates respiratory pattern: effects mediated by M3-like receptors in preBötzinger complex inspiratory neurons. J. Neurophysiol. 83(3), 1243–1252 (2000)

    Google Scholar 

  95. Shao, X.M., Feldman, J.L.: Mechanisms underlying regulation of respiratory pattern by nicotine in preBötzinger complex. J. Neurophysiol. 85(6), 2461–2467 (2001)

    Google Scholar 

  96. Shao, X.M., Feldman, J.L.: Pharmacology of nicotinic receptors in preBötzinger complex that mediate modulation of respiratory pattern. J. Neurophysiol. 88(4), 1851–1858 (2002)

    Google Scholar 

  97. Shao, X.M., Feldman, J.L.: Cholinergic neurotransmission in the preBötzinger complex modulates excitability of inspiratory neurons and regulates respiratory rhythm. Neuroscience 130(4), 1069–1081 (2005)

    Article  Google Scholar 

  98. Tryba, A.K., Pena, F., Ramirez, J.M.: Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors. J. Neurosci. 26(10), 2623–2634 (2006)

    Article  Google Scholar 

  99. Doi, A., Ramirez, J.M.: State-dependent interactions between excitatory neuromodulators in the control of breathing. J. Neurosci. 30, 8251–8262 (2010)

    Article  Google Scholar 

  100. Gray, P.A., Rekling, J.C., Bocchiaro, C.M., Feldman, J.L.: Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 286(5444), 1566–1568 (1999)

    Article  Google Scholar 

  101. Shvarev, Y.N., Lagercrantz, H., Yamamoto, Y.: Biphasic effects of substance P on respiratory activity and respiration-related neurones in ventrolateral medulla in the neonatal rat brainstem in vitro. Acta Physiol. Scand. 174(1), 67–84 (2002)

    Article  Google Scholar 

  102. Thoby-Brisson, M., Trinh, J.B., Champagnat, J., Fortin, G.: Emergence of the pre-Bötzinger respiratory rhythm generator in the mouse embryo. J. Neurosci. 25(17), 4307–4318 (2005)

    Article  Google Scholar 

  103. Telgkamp, P., Cao, Y.Q., Basbaum, A.I., Ramirez, J.M.: Long-term deprivation of substance P in PPT-A mutant mice alters the anoxic response of the isolated respiratory network. J. Neurophysiol. 88(1), 206–213 (2002)

    Google Scholar 

  104. Oh, E.J., Gover, T.D., Cordoba-Rodriguez, R., Weinreich, D.: Substance P evokes cation currents through TRP channels in HEK293 cells. J. Neurophysiol. 90(3), 2069–2073 (2003)

    Article  Google Scholar 

  105. Clapham, D.E., Montell, C., Schultz, G., Julius, D.: International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55(4), 591–596 (2003)

    Article  Google Scholar 

  106. Ballantyne, D., Richter, D.W.: Post-synaptic inhibition of bulbar inspiratory neurones in the cat. J. Physiol. 348, 67–87 (1984)

    Google Scholar 

  107. Ogilvie, M.D., Gottschalk, A., Anders, K., Richter, D.W., Pack, A.I.: A network model of respiratory rhythmogenesis. Am. J. Physiol. 263(4 Pt 2), R962–R975 (1992)

    Google Scholar 

  108. Abdala, A.P., Rybak, I.A., Smith, J.C., Zoccal, D.B., Machado, B.H., St.-John, W.M., Paton, J.F.: Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir. Physiol. Neurobiol. 168(1–2), 19–25 (2009)

    Article  Google Scholar 

  109. Baekey, D.M., Molkov, Y.I., Paton, J.F., Rybak, I.A., Dick, T.E.: Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir. Physiol. Neurobiol. 174, 135–145 (2010)

    Article  Google Scholar 

  110. Rubin, J.E., Hayes, J.A., Mendenhall, J.L., Del Negro, C.A.: Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc. Natl. Acad. Sci USA 106(8), 2939–2944 (2009)

    Article  ADS  Google Scholar 

  111. Smith, J.C., Abdala, A.P., Rybak, I.A., Paton, J.F.: Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364(1529), 2577–2587 (2009)

    Article  Google Scholar 

  112. Ramirez, J.M., Telgkamp, P., Elsen, F.P., Quellmalz, U.J., Richter, D.W.: Respiratory rhythm generation in mammals. Synaptic and membrane properties. Respir. Physiol. 110(2–3), 71–85 (1997)

    Article  Google Scholar 

  113. Tryba, A.K., Pena, F., Ramirez, J.M.: Stabilization of bursting in respiratory pacemaker neurons. J. Neurosci. 23(8), 3538–3546 (2003)

    Google Scholar 

  114. Shao, X.M., Feldman, J.L.: Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission. J. Neurophysiol. 77(4), 1853–1860 (1997)

    Google Scholar 

  115. Ramirez, J.M., Viemari, J.C.: Determinants of inspiratory activity. Respir. Physiol. Neurobiol. 147 (2–3), 145–157 (2005)

    Article  Google Scholar 

  116. Funk, G.D., Smith, J.C., Feldman, J.L.: Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids. J. Neurophysiol. 70(4), 1497–1515 (1993)

    Google Scholar 

  117. Greer, J.J., Smith, J.C., Feldman, J.L.: Role of excitatory amino acids in the generation and transmission of respiratory drive in neonatal rat. J. Physiol. 437, 727–749 (1991)

    Google Scholar 

  118. Lieske, S.P., Ramirez, J.M.: Pattern-specific synaptic mechanisms in a multifunctional network. I. Effects of alterations in synapse strength. J. Neurophysiol. 95(3), 1323–1333 (2006)

    Article  Google Scholar 

  119. Lieske, S.P., Ramirez, J.M.: Pattern-specific synaptic mechanisms in a multifunctional network. II. Intrinsic modulation by metabotropic glutamate receptors. J. Neurophysiol. 95(3), 1334–1344 (2006)

    Article  Google Scholar 

  120. Pace, R.W., Mackay, D.D., Feldman, J.L., Del Negro, C.A.: Role of persistent sodium current in mouse preBötzinger complex neurons and respiratory rhythm generation. J. Physiol. 580, 485–496 (2007)

    Article  Google Scholar 

  121. Rekling, J.C., Feldman, J.L.: PreBötzinger complex and pacemaker neurons. Hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60, 385–405 (1998)

    Article  Google Scholar 

  122. Tryba, A.K., Ramirez, J.M.: Background sodium current stabilizes bursting in respiratory pacemaker neurons. J. Neurobiol. 60(4), 481–489 (2004)

    Article  Google Scholar 

  123. Johnson, S.M., Smith, J.C., Funk, G.D., Feldman, J.L.: Pacemaker behavior of respiratory neurons in medullary slices from neonatal rat. J. Neurophysiol. 72(6), 2598–2608 (1994)

    Google Scholar 

  124. Ramirez, J.M., Richter, D.W.: The neuronal mechanisms of respiratory rhythm generation. Curr. Opin. Neurobiol. 6(6), 817–825 (1996)

    Article  Google Scholar 

  125. Ramirez, J.M., Pearson, K.G.: Octopamine induces bursting and plateau potentials in insect neurones. Brain Res. 549(2), 332–337 (1991)

    Article  Google Scholar 

  126. Butera, R.J., Jr., Rinzel, J., Smith, J.C.: Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol. 82(1), 382–397 (1999)

    Google Scholar 

  127. Del Negro, C.A., Wilson, C.G., Butera, R.J., Rigatto, H., Smith, J.C.: Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophys. J. 82(1 Pt 1), 206–214 (2002)

    Google Scholar 

  128. Morgado-Valle, C., Beltran-Parrazal, L., DiFranco, M., Vergara, J.L., Feldman, J.L.: Somatic Ca2 +  transients do not contribute to inspiratory drive in preBötzinger complex neurons. J. Physiol. 586(18), 4531–4540 (2008)

    Article  Google Scholar 

  129. Chevalier, M., Ben-Mabrouk, F., Tryba, A.K.: Background sodium current underlying respiratory rhythm regularity. Eur. J. Neurosci. 28(12), 2423–2433 (2008)

    Article  Google Scholar 

  130. Morgado-Valle, C., Baca, S.M., Feldman, J.L.: Glycinergic pacemaker neurons in preBötzinger complex of neonatal mouse. J. Neurosci. 30(10), 3634–3639 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institutes of Health Grants R01 HL/NS-60120 and P01 HL-090554-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Marino Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, JM., Koch, H., Garcia, A.J. et al. The role of spiking and bursting pacemakers in the neuronal control of breathing. J Biol Phys 37, 241–261 (2011). https://doi.org/10.1007/s10867-011-9214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9214-z

Keywords

Navigation