Skip to main content
Log in

Biosynthesis, processing, and secretion of glial cell line-derived neurotrophic factor in astroglial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Glial cell line-derived neurotrophic factor (GDNF) is synthesized as a precursor, proGDNF. However, the molecular mechanisms for the processing and secretion of GDNF are not fully characterized, since the amount of its biosynthesis and secretion in glial cells are below the detection limit of western blotting. We established stably GDNF-overexpressing C6 cells, and this enabled us to monitor its spontaneous secretion, as well as its processed forms in the cells. GDNF secretion was augmented by stimulation with high potassium, while it was inhibited by treatment with either tunicamycin, an inhibitor of protein glycosylation, or brefeldin A, a disturbing factor of ER-Golgi transport. Wild-type GDNF transfected cells secreted three forms of processed GDNF. After deglycosylation, the highest molecular weight of secreted GDNF showed the same mobility on electrophoresis as recombinant human GDNF without a whole pro-domain. Mutations in the pro-domain and two cysteines at the C-terminal of GDNF markedly diminished the secretion of resultant proteins into the culture medium. GDNF proteins having mutations in the putative furin-consensus sequence were secreted partly as unprocessed forms, and forms with lower molecular weights than a mature form were secreted from the C6 cells. Taking these observations together, we conclude that GDNF is likely secreted both with and without processing by furin-like proteases, and that the pro-domain and C-terminal cysteines of GDNF play important roles in its processing and secretion in cultured astrocytes and C6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132. doi:10.1126/science.8493557

    Article  PubMed  CAS  Google Scholar 

  2. Poulsen KT, Armanini MP, Klein RD et al (1994) TGFβ2 and TGFβ3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13:1245–1252. doi:10.1016/0896-6273(94)90062-0

    Article  PubMed  CAS  Google Scholar 

  3. Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Brain Res Dev Brain Res 85:80–88. doi:10.1016/0165-3806(94)00197-8

    Article  PubMed  CAS  Google Scholar 

  4. Suvanto P, Hiltunen JO, Arumae U et al (1996) Localization of glial cell line-derived neurotrophic factor (GDNF) mRNA in embryonic rat by in situ hybridization. Eur J Neurosci 8:816–822. doi:10.1111/j.1460-9568.1996.tb01267.x

    Article  PubMed  CAS  Google Scholar 

  5. Moore MW, Klein RD, Farinas I et al (1996) Rosenthal, renal and neuronal abnormalities in mice lacking GDNF. Nature 382:76–79. doi:10.1038/382076a0

    Article  PubMed  CAS  Google Scholar 

  6. Pichel JG, Shen L, Sheng HZ et al (2000) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76. doi:10.1038/382073a0

    Article  Google Scholar 

  7. Satake K, Matsuyama Y, Kamiya M et al (2000) Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury. Neuroreport 11:3877–3881. doi:10.1097/00001756-200011270-00054

    Article  PubMed  CAS  Google Scholar 

  8. Ikeda T, Koo H, Xia YX (2002) Bimodal upregulation of glial cell line-derived neurotrophic factor (GDNF) in the neonatal rat brain following ischemic/hypoxic injury. Int J Dev Neurosci 20:555–562. doi:10.1016/S0736-5748(02)00082-5

    Article  PubMed  CAS  Google Scholar 

  9. Eslamboli A, Georgievska B, Ridley RM et al (2005) Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci 25:769–777. doi:10.1523/JNEUROSCI.4421-04.2005

    Article  PubMed  CAS  Google Scholar 

  10. Eigenbrot C, Gerber N (1997) X-ray structure of glial cell-derived neurotrophic factor at 1.9 A resolution and implications for receptor binding. Nat Struct Biol 4:435–438. doi:10.1038/nsb0697-435

    Article  PubMed  CAS  Google Scholar 

  11. Mouri A, Nomoto H, Furukawa S (2007) Processing of nerve growth factor: the role of basic amino acid clusters in the pro-region. Biochem Biophys Res Commun 353:1056–1062. doi:10.1016/j.bbrc.2006.12.136

    Article  PubMed  CAS  Google Scholar 

  12. Nomoto H, Takaiwa M, Mouri A, Furukawa S (2007) Pro-region of neurotrophins determines the processing efficiency. Biochem Biophys Res Commun 356:919–924. doi:10.1016/j.bbrc.2007.03.059

    Article  PubMed  CAS  Google Scholar 

  13. Lim KC, Tyler CM, Lim ST et al (2007) Proteolytic processing of proNGF is necessary for mature NGF regulated secretion from neurons. Biochem Biophys Res Commun 361:599–604. doi:10.1016/j.bbrc.2007.07.039

    Article  PubMed  CAS  Google Scholar 

  14. Tanaka T, Oh-hashi K, Ito M et al (2008) Identification of a novel GDNF mRNA induced by LPS in immune cell lines. Neurosci Res 61:11–17. doi:10.1016/j.neures.2008.01.004

    Article  PubMed  CAS  Google Scholar 

  15. Alfano I, Vora P, Mummery RS et al (2007) The major determinant of the heparin binding of glial cell-line-derived neurotrophic factor is near the N-terminus and is dispensable for receptor binding. Biochem J 404:131–140. doi:10.1042/BJ20061747

    Article  PubMed  CAS  Google Scholar 

  16. Immonen T, Alakuijala A, Hytönen M et al (2008) A proGDNF-related peptide BEP increases synaptic excitation in rat hippocampus. Exp Neurol 210:793–796. doi:10.1016/j.expneurol.2007.12.018

    Article  PubMed  CAS  Google Scholar 

  17. Scamuffa N, Calvo F, Chrétien M et al (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963. doi:10.1096/fj.05-5491rev

    Article  PubMed  CAS  Google Scholar 

  18. Bruno MA, Cuello AC (2006) Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci USA 103:6735–6740. doi:10.1073/pnas.0510645103

    Article  PubMed  CAS  Google Scholar 

  19. Mowla SJ, Farhadi HF, Pareek S et al (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276:12660–12666. doi:10.1074/jbc.M008104200

    Article  PubMed  CAS  Google Scholar 

  20. Kinameri E, Matsuoka I (2003) Autocrine action of BMP2 regulates expression of GDNF-mRNA in sciatic Schwann cells. Brain Res Mol Brain Res 117:221–227. doi:10.1016/S0169-328X(03)00326-7

    Article  PubMed  CAS  Google Scholar 

  21. Oh-hashi K, Kaneyama M, Hirata Y, Kiuchi K (2006) ER calcium discharge stimulates GDNF gene expression through MAPK-dependent and -independent pathways in rat C6 glioblastoma cells. Neurosci Lett 405:100–105. doi:10.1016/j.neulet.2006.06.027

    Article  PubMed  CAS  Google Scholar 

  22. Ribeiro CM, McKay RR, Hosoki E et al (2000) Effects of elevated cytoplasmic calcium and protein kinase C on endoplasmic reticulum structure and function in HEK293 cells. Cell Calcium 27:175–185. doi:10.1054/ceca.2000.0108

    Article  PubMed  CAS  Google Scholar 

  23. Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119:3958–3966. doi:10.1242/jcs.03160

    Article  PubMed  CAS  Google Scholar 

  24. Nielsen M, Madsen P, Christensen EI et al (2001) The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J 20:2180–2190. doi:10.1093/emboj/20.9.2180

    Article  PubMed  CAS  Google Scholar 

  25. Nykjaer A, Lee R, Teng KK et al (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848. doi:10.1038/nature02319

    Article  PubMed  CAS  Google Scholar 

  26. Teng HK, Teng KK, Lee R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463. doi:10.1523/JNEUROSCI.5123-04.2005

    Article  PubMed  CAS  Google Scholar 

  27. Chen ZY, Ieraci A, Teng H et al (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25:6156–6166. doi:10.1523/JNEUROSCI.1017-05.2005

    Article  PubMed  CAS  Google Scholar 

  28. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948. doi:10.1126/science.1065057

    Article  PubMed  CAS  Google Scholar 

  29. Fahnestock M, Michalski B, Xu B, Coughlin MD (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol Cell Neurosci 18:210–220. doi:10.1006/mcne.2001.1016

    Article  PubMed  CAS  Google Scholar 

  30. Harrington AW, Leiner B, Blechschmitt C et al (2004) Secreted proNGF is a pathophysiological death-inducing ligand after adult CNS injury. Proc Natl Acad Sci USA 101:6226–6230. doi:10.1073/pnas.0305755101

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Kiuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh-hashi, K., Ito, M., Tanaka, T. et al. Biosynthesis, processing, and secretion of glial cell line-derived neurotrophic factor in astroglial cells. Mol Cell Biochem 323, 1–7 (2009). https://doi.org/10.1007/s11010-008-9958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9958-3

Keywords

Navigation