Skip to main content

Advertisement

Log in

A Simplified Method for Isolating Highly Purified Neurons, Oligodendrocytes, Astrocytes, and Microglia from the Same Human Fetal Brain Tissue

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Elucidation of the underlying pathogenic mechanisms leading to apoptosis of neurons and oligodendrocytes and activation of microglia and astrocytes in different neurodegenerative and neuroinflammatory disorders remains a challenge in neuroscience. In order to overcome the challenge and find out therapeutic remedies, it is important to study live and death processes in each and every cell type of the brain. Here we present a protocol of isolating highly purified microglia, astrocytes, oligodendrocytes, and neurons, all four major cell types of the CNS, from the same human fetal brain tissue. As found in vivo, these primary neurons and oligodendroglia underwent apoptosis and cell death in response to neurodegenerative challenges. On the other hand, astroglia, and microglia, cells that do not die in neurodegenerative brains, became activated after inflammatory challenge. The availability of highly purified human brain cells will increase the possibility of developing therapies for different neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armstrong RC (1998) Isolation and characterization of immature oligodendrocyte lineage cells. Methods (San Diego, CA) 16(3):282–292

    CAS  Google Scholar 

  2. Barnea A, Roberts J (1999) An improved method for dissociation and aggregate culture of human fetal brain cells in serum-free medium. Brain Res. 4(2):156–164

    CAS  Google Scholar 

  3. Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26(18):4930–4939

    Article  PubMed  CAS  Google Scholar 

  4. Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42(5):674–683

    Article  PubMed  CAS  Google Scholar 

  5. Cheepsunthorn P, Radov L, Menzies S, Reid J, Connor JR (2001) Characterization of a novel brain-derived microglial cell line isolated from neonatal rat brain. Glia 35(1):53–62

    Article  PubMed  CAS  Google Scholar 

  6. Dasgupta S, Jana M, Zhou Y, Fung YK, Ghosh S, Pahan K (2004) Antineuroinflammatory effect of NF-kappaB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J Immunol 173(2):1344–1354

    PubMed  CAS  Google Scholar 

  7. Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178

    PubMed  CAS  Google Scholar 

  8. Jana A, Pahan K (2004a) Fibrillar amyloid-beta peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease. J Biol Chem 279(49):51451–51459

    Article  PubMed  CAS  Google Scholar 

  9. Jana A, Pahan K (2004b) Human immunodeficiency virus type 1 gp120 induces apoptosis in human primary neurons through redox-regulated activation of neutral sphingomyelinase. J Neurosci 24(43):9531–9540

    Article  PubMed  CAS  Google Scholar 

  10. Jana M, Pahan K (2005) Redox regulation of cytokine-mediated inhibition of myelin gene expression in human primary oligodendrocytes. Free radical biology & medicine 39(6):823–831

    Article  CAS  Google Scholar 

  11. Kay AR, Wong RK (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods 16(3):227–238

    Article  PubMed  CAS  Google Scholar 

  12. Lee SC, Liu W, Brosnan CF, Dickson DW (1992) Characterization of primary human fetal dissociated central nervous system cultures with an emphasis on microglia. Lab Invest J Tech Methods Pathol 67(4):465–476

    CAS  Google Scholar 

  13. Liu X, Jana M, Dasgupta S, Koka S, He J, Wood C, Pahan K (2002) Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J Biol Chem 277(42):39312–39319

    Article  PubMed  CAS  Google Scholar 

  14. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904

    Article  PubMed  CAS  Google Scholar 

  15. McMillian MK, Thai L, Hong JS, O’Callaghan JP, Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17(4):138–142

    Article  PubMed  CAS  Google Scholar 

  16. Oorschot DE, Jones DG (1986) Non-neuronal cell proliferation in tissue culture: implications for axonal regeneration in the central nervous system. Brain Res 368(1):49–61

    Article  PubMed  CAS  Google Scholar 

  17. Pahan K, Jana M, Liu X, Taylor BS, Wood C, Fischer SM (2002) Gemfibrozil, a lipid-lowering drug, inhibits the induction of nitric-oxide synthase in human astrocytes. J Biol Chem 277(48):45984–45991

    Article  PubMed  CAS  Google Scholar 

  18. Roy A, Fung YK, Liu X, Pahan K (2006) Up-regulation of microglial CD11b expression by nitric oxide. J Biol Chem 281(21):14971–14980

    Article  PubMed  CAS  Google Scholar 

  19. Ryan LA, Peng H, Erichsen DA, Huang Y, Persidsky Y, Zhou Y, Gendelman HE, Zheng J (2004) TNF-related apoptosis-inducing ligand mediates human neuronal apoptosis: links to HIV-1-associated dementia. J Neuroimmunol 148(1–2):127–139

    Article  PubMed  CAS  Google Scholar 

  20. Saha RN, Pahan K (2003) Tumor necrosis factor-alpha at the crossroads of neuronal life and death during HIV-associated dementia. J Neurochem 86(5):1057–1071

    Article  PubMed  CAS  Google Scholar 

  21. Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947

    Article  PubMed  CAS  Google Scholar 

  22. Vila M, Jackson-Lewis V, Guegan C, Wu DC, Teismann P, Choi DK, Tieu K, Przedborski S (2001) The role of glial cells in Parkinson’s disease. Curr Opin Neurol 14(4):483–489

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid beta peptide 1-42 through p53 and bax in cultured primary human neurons. J Cell Biol 156(3):519–529

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. You Zhou of the University of Nebraska at Lincoln for his help in microscopy. This study was supported by grants from NIH (NS39940 and NS48923) and National Multiple Sclerosis Society (RG3422A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalipada Pahan.

Additional information

M. Jana and A. Jana have equal contribution to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jana, M., Jana, A., Pal, U. et al. A Simplified Method for Isolating Highly Purified Neurons, Oligodendrocytes, Astrocytes, and Microglia from the Same Human Fetal Brain Tissue. Neurochem Res 32, 2015–2022 (2007). https://doi.org/10.1007/s11064-007-9340-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9340-y

Keywords

Navigation