Skip to main content
Log in

Age Related Changes from Youth to Adulthood in Rat Brain Cortex: Nitric Oxide Synthase and Mitochondrial Respiratory Function

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Age related changes in brain cortex NO metabolism were investigated in mitochondria and cytosolic extracts from youth to adulthood. Decreases of 19%, 40% and 71% in NO production were observed in mitochondrial fractions from 3, 7, and 14 months old rats, respectively, as compared with 1-month-old rats. Decreased nNOS protein expression in 14 months old rats was also observed in mitochondria as compared with the nNOS protein expression in 1-month-old rats. Low levels of eNOS protein expression close to the detection limits and no iNOS protein expression were significantly detected in mitochondrial fraction for both groups of age. NO production in the cytosolic extracts also showed a marked decreasing tendency, showing higher levels than those observed in mitochondrial fractions for all groups of age. In the cytosolic extracts, however, the levels were stabilized in adult animals from 7 to 14 months. nNOS protein expression showed a similar age-pattern in cytosolic extracts for both groups of age, while the protein expression pattern for eNOS was higher expressed in adult rats (14 months) than in young animals. As well as in mitochondrial extracts iNOS protein expression was not significantly detected in cytosolic extracts at any age. RT-PCR assays indicated increased levels of nNOS mRNA in 1-month-old rats as compared with 14 months old rats, showing a similar pattern to that one observed for protein nNOS expression. A different aged pattern was observed for eNOS mRNA expression, being lower in 1-month-old rats as compared with 14 months old animals. iNOS mRNA was very low expressed in both groups of age, showing a residual iNOS mRNA that was not significantly detected. State 3 respiration rates were 78% and 85% higher when succinate and malate-glutamate were used as substrates, respectively, in 14 months rats as compared with 1-month-old rats. No changes were observed in state 4 respiration rates. These results could indicate 1 that nNOS and eNOS mRNA and protein expression can be age-dependent, and confirmed the nNOS origin for the mitochondrial NOS. During rat growth, the respiratory function seems to be modulated by NO produced by the different NOS enzymes: nNOS, eNOS and mtNOS present in the cytosol and in the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolb B, Tees RC (1990) The cerebral cortex of the rat. MIT Press, Cambridge

    Google Scholar 

  2. Lores Arnaiz S, D’Amico G, Paglia N, Arismendi M, Basso N, Lores Arnaiz MR (2004) Enriched environment, nitric oxide production and synaptic plasticity prevent the aging-dependent impairment of spatial cognition. Mol Asp Med 25:91–101

    Article  CAS  Google Scholar 

  3. Harman D (1956) Aging Theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  4. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  5. McCann SM, Licinio J, Wong ML, Yu WH, Karanth S, Rettori V (1998) The nitric oxide hypothesis of aging. Exp Gerontol 33:813–826

    Article  PubMed  CAS  Google Scholar 

  6. Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8(4):297–301

    Article  PubMed  CAS  Google Scholar 

  7. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    Article  PubMed  CAS  Google Scholar 

  8. Zhang J, Snyder SH (1995) Nitric oxide in the nervous system. Annu Rev Pharmacol Toxicol 35:213–233

    Article  PubMed  CAS  Google Scholar 

  9. Calabrese V, Bates TE, Stella AM (2000) NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 25:1315–1341

    Article  PubMed  CAS  Google Scholar 

  10. Yamada K, Nabeshima T (1998) Changes in NMDA receptor/nitric oxide signaling pathway in the brain with aging. Microsc Res Tech 43:68–74

    Article  PubMed  CAS  Google Scholar 

  11. Giulivi C, Poderoso JJ, Boveris A (1998) Production of nitric oxide by mitochondria. J Biol Chem 273:11038–11043

    Article  PubMed  CAS  Google Scholar 

  12. Ghafourifar P, Richter C (1997) Nitric oxide synthase activity in mitochondria. FEBS Lett 418:291–296

    Article  PubMed  CAS  Google Scholar 

  13. Brown G, Cooper CE (1994) Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 356:295–298

    Article  PubMed  CAS  Google Scholar 

  14. Cleeter MWJ, Cooper JM, Darley-Usmar VM, Moncada S, Shapira AHV (1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 345:50–54

    Article  PubMed  CAS  Google Scholar 

  15. Bustamante J, Bersier G, Romero M, Aron-Badin R, Boveris A (2000) Nitric oxide production and mitochondrial dysfunction during rat thymocyte apoptosis. Arch Biochem Biophys 376:239–247

    Article  PubMed  CAS  Google Scholar 

  16. Bustamante J, Bersier G, Aron Badin R, Cymering C, Parodi A, Boveris A (2002) Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide: Biol Chem 6:333–341

    Article  CAS  Google Scholar 

  17. Lores-Arnaiz S, D’Amico G, Czerniczyniec A, Bustamante J, Boveris A (2004) Brain mitochondrial nitric oxide synthase: in vitro and in vivo inhibition by chlorpromazine. Arch Biochem Biophys 430:170–177

    Article  PubMed  CAS  Google Scholar 

  18. Czerniczyniec A, Bustamante J, Lores Arnaiz S (2007) Improvement of mouse brain mitochondrial function after deprenyl treatment. Neuroscience 144(2):685–693

    Article  PubMed  CAS  Google Scholar 

  19. Clark JB, Nicklas WJ (1970) The metabolism of rat brain mitochondria. J Biol Chem 245:4724–4731

    PubMed  CAS  Google Scholar 

  20. Czerniczyniec A, Bustamante J, Lores Arnaiz S (2006) Modulation of brain mitochondrial function by deprenyl. Neurochem Int 48:235–241

    Article  PubMed  CAS  Google Scholar 

  21. Boveris A, Lores Arnaiz S, Bustamante J, Alvarez S, Valdez L, Boveris AD, Navarro A (2002) Pharmacological regulation of mitochondrial nitric oxide synthase. Meth Enzymol 359:328–339

    PubMed  CAS  Google Scholar 

  22. Kikuchi K, Pagano T, Hirobe M (1996) Novel detection method of nitric oxide using horseradish peroxidase. Biol Pharm Bull 19:649–665

    PubMed  CAS  Google Scholar 

  23. Bustamante J, Di Libero E, Fernandez-Cobo M, Monti N, Cadenas E, Boveris A (2004) Kinetic analysis of thapsigargin-induced thymocyte apoptosis. Free Rad Biol Med 37:1490–1498

    Article  PubMed  CAS  Google Scholar 

  24. Elfering SL, Sarkela TM, Gulivi C (2002) Biochemistry of mitochondrial nitric oxide synthase. J Biol Chem 277:38079–38086

    Article  PubMed  CAS  Google Scholar 

  25. Fellet AL, Balaszczuk AM, Arranz C, Lopez-Costa JJ, Boveris A, Bustamante J (2006) Autonomic regulation of pacemaker activity: role of heart nitric oxide synthases. Am J Physiol Heart Circ Physiol 291(3):H1246–H1254

    Article  PubMed  CAS  Google Scholar 

  26. Cymeryng CB, Lotito S, Colonna C, Fienkielstein C, Pomeraniec Y, Grion´n N, Gadda L, Maloberti P, Podesta EJ (2002) Expression of nitric oxide synthases in rat adrenal zona fasciculata cells. Endocrinology 143(4):1235–1242

    Article  PubMed  CAS  Google Scholar 

  27. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Meth Enzymol 10:41–47

    CAS  Google Scholar 

  28. Tatoyan A, Giulivi C (1998) Purification and characterization of a nitric oxide synthase from rat liver mitochondria. J Biol Chem 273:11044–11048

    Article  PubMed  CAS  Google Scholar 

  29. Bates TE, Loesch A, Burnstock G, Clark JB (1995) Immunocytochemical evidence for a mitochondrially located nitric oxide synthase in brain and liver. Biochem Biophys Res Commun 213(3):896–900

    Article  PubMed  CAS  Google Scholar 

  30. Kanai AJ, Pearce LL, Clemens PR, Birder LA, Vanb Bibber MM, Choi SY, de Groat WC, Peterson J (2001) Identification of a neuronal nitic oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci USA 98:14126–14131

    Article  PubMed  CAS  Google Scholar 

  31. Dedkova EN, Blatter LA (2005) Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells. Am J Physiol Cell Physiol 289:C836–C845

    Article  PubMed  CAS  Google Scholar 

  32. Boveris A, Valdez LB, Zaobornyj T, Bustamante J (2006) Mitochondrial metabolic state regulate nitric oxide and hydrogen peroxide diffusion to the cytosol. Biochim Biophys Acta 1757:535–542

    Article  PubMed  CAS  Google Scholar 

  33. Lores Arnaiz S, Bustamante J, D’Amico G, Arismendi M, Vilas S, Paglia N, Basso N, Capani F, Coirini H, López Costa JJ, Lores Arnaiz MR (2006) Extensive enriched environments prevent old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production. Behav Brain Res 169:294–302

    Article  PubMed  CAS  Google Scholar 

  34. Boveris A, Costa L, Poderoso JJ, Carreras MC, Cadenas E (2000) Regulation of mitochondrial respiration by oxygen and nitric oxide. Ann N Y Acad Sci 899:121–135

    Article  PubMed  CAS  Google Scholar 

  35. Poderoso JJ, Carreras C, Lindero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  PubMed  CAS  Google Scholar 

  36. Manczak M, Jung Y, Park BS, Partovi D, Reddy PH (2005) Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage and cytochrome c in aging. J Neurochem 92:494–504

    Article  PubMed  CAS  Google Scholar 

  37. Deshmukh DR, Patel MS (1980) Age-dependent changes in glutamate oxidation by non-synaptic mitochondria from rat brain. Mech Ageing Dev 13:75–81

    Article  PubMed  CAS  Google Scholar 

  38. Sarkela TM, Berthiaume J, Elfering S, Gybina AA, Giulivi C (2001) The modulation of oxygen radical production by nitric oxide in mitochondria. J Biol Chem 276:66945–66949

    Article  Google Scholar 

  39. Navarro A, Boveris A (2007) The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 292(2):C670–C686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from University of Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, and Agencia Nacional de Promoción Científica y Tecnológica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanita Bustamante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, J., Czerniczyniec, A., Cymeryng, C. et al. Age Related Changes from Youth to Adulthood in Rat Brain Cortex: Nitric Oxide Synthase and Mitochondrial Respiratory Function. Neurochem Res 33, 1216–1223 (2008). https://doi.org/10.1007/s11064-007-9570-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9570-z

Keywords

Navigation